论文标题
$ \ mathbb {f} _q^d $中子集生成的决定因素的数量的最佳限制
An optimal bound on the number of determinants generated by a subset in $\mathbb{F}_q^d$
论文作者
论文摘要
在此简短说明中,我们证明,对于$ \ Mathcal {e} \ subset \ mathbb {f} _q^d $ at $ | \ m athcal {e} | \ geq q^{d-1} + o(q^2)$,然后由$ \ mathcal {e} $生成的确定因素集为$ \ mathbb {f} _q。$。 该结果几乎是最佳的,并概括了Vinh(2013)和Iosevich,Rudnev和Zhai(2015)的先前结果。
In this short note, we prove that for $\mathcal{E} \subset \mathbb{F}_q^d$ with $|\mathcal{E}| \geq q^{d-1} + O(q^2)$ then the set of determinants generated by $\mathcal{E}$ is $\mathbb{F}_q.$ This result is nearly optimal and generalizes the previous results of Vinh (2013) and Iosevich, Rudnev and Zhai (2015).