论文标题
詹姆斯树空间的变体
Variants of the James Tree space
论文作者
论文摘要
最近,W。CuellarCarrera,N。DeRancourt和V. Ferenczi介绍了$ d_2 $ - herdistientient的不可分解的Banach空间的概念,即不包含任何两个非希尔伯特式亚平面的非希尔伯特式空间。他们提出了一个问题,即$ \ ell_2 $饱和的此类空间。在这个问题的激励下,我们定义并研究了两个变体$ jt_ {2,p} $和$ jt_g $的詹姆斯树太空$ jt $。它们本来是未来空间的古典类似物,将肯定回答上述问题。
Recently, W. Cuellar Carrera, N. de Rancourt, and V. Ferenczi introduced the notion of $d_2$-hereditarily indecomposable Banach spaces, i.e., non-Hilbertian spaces that do not contain the direct sum of any two non-Hilbertian subspaces. They posed the question of the existence of such spaces that are $\ell_2$-saturated. Motivated by this question, we define and study two variants $JT_{2,p}$ and $JT_G$ of the James Tree space $JT$. They are meant to be classical analogues of a future space that will affirmatively answer the aforementioned question.