论文标题

人群审查:通过协作拒绝对手 - 并应用多机器人羊群

Crowd Vetting: Rejecting Adversaries via Collaboration--with Application to Multi-Robot Flocking

论文作者

Mallmann-Trenn, Frederik, Cavorsi, Matthew, Gil, Stephanie

论文摘要

我们表征了在Sybil攻击存在下使用机器人邻居查找和消除对抗机器人的优势。我们表明,通过利用其邻居对传输数据的可信度的看法,机器人可以以很高的可能性来检测对手。我们表征了实现这一结果所需的许多沟通回合,这是沟通质量以及合法与恶意机器人的比例的函数。该结果使许多多机器人算法的弹性提高了。由于我们的结果是有限的时间,而不是渐近的时间,因此它们特别适合具有时间批判性质的问题。我们开发了两种算法,即\ emph {findspoofedrobots},这些算法以高概率确定受信任的邻居,\ emph {findResilientAdjacencyMatrix},该<emph {findResilientAdjacencyMatrix}启用了对抗性设置中图形属性的分布式计算。我们将方法应用于羊群问题,其中一组机器人必须在存在对抗机器人的情况下跟踪移动目标。我们表明,通过使用我们的算法,机器人团队能够保持动态目标的跟踪能力。

We characterize the advantage of using a robot's neighborhood to find and eliminate adversarial robots in the presence of a Sybil attack. We show that by leveraging the opinions of its neighbors on the trustworthiness of transmitted data, robots can detect adversaries with high probability. We characterize a number of communication rounds required to achieve this result to be a function of the communication quality and the proportion of legitimate to malicious robots. This result enables increased resiliency of many multi-robot algorithms. Because our results are finite time and not asymptotic, they are particularly well-suited for problems with a time critical nature. We develop two algorithms, \emph{FindSpoofedRobots} that determines trusted neighbors with high probability, and \emph{FindResilientAdjacencyMatrix} that enables distributed computation of graph properties in an adversarial setting. We apply our methods to a flocking problem where a team of robots must track a moving target in the presence of adversarial robots. We show that by using our algorithms, the team of robots are able to maintain tracking ability of the dynamic target.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源