论文标题
来自其线性极限的系统矢量孤立波在一维$ n $组成的玻色 - 因斯坦冷凝水
Systematic vector solitary waves from their linear limits in one-dimensional $n$-component Bose-Einstein condensates
论文作者
论文摘要
我们系统地构建了一系列的矢量孤立波,在谐波的一维三,四和五组分的玻色 - 因晶体中。这些固定状态在化学势中继续从分析性处理的低密度线性限制(作为独立的线性量子谐波振荡子状态)到高密度非线性非线性Thomas-Fermi状态。提出了系统的插值程序,以通过化学势的多维空间中的轨迹实现这种顺序延续。 Bogolyubov-DE Gennes(BDG)光谱分析表明,此处考虑的所有状态都可以在Thomas-Fermi制度中以适当的化学潜在间隔完全稳定。最后,我们提出了一些典型的$ su(n)$ - 旋转引起的动力学和驱动诱导的动力学。该方法可以扩展到更高的维度,并显示出巨大的前景,可以找到前方的各种孤立波。
We systematically construct a series of vector solitary waves in harmonically trapped one-dimensional three-, four-, and five-component Bose-Einstein condensates. These stationary states are continued in chemical potentials from the analytically tractable low-density linear limit of respective states, as independent linear quantum harmonic oscillator states, to the high-density nonlinear Thomas-Fermi regime. A systematic interpolation procedure is proposed to achieve this sequential continuation via a trajectory in the multi-dimensional space of the chemical potentials. The Bogolyubov-de Gennes (BdG) spectra analysis shows that all of the states considered herein can be fully stabilized in suitable chemical potential intervals in the Thomas-Fermi regime. Finally, we present some typical $SU(n)$-rotation-induced and driving-induced dynamics. This method can be extended to higher dimensions and shows significant promise for finding a wide range of solitary waves ahead.