论文标题

熵最大化和元分类,用于语义分割中的分布外检测

Entropy Maximization and Meta Classification for Out-Of-Distribution Detection in Semantic Segmentation

论文作者

Chan, Robin, Rottmann, Matthias, Gottschalk, Hanno

论文摘要

图像的语义分割的深神经网络(DNN)通常经过训练以在预定义的封闭式对象类上操作。这与“开放世界”环境相反,在该环境中,DNN设想被部署到。从功能性安全的角度来看,检测所谓的“分布式分布”(OOD)样本,即DNN语义空间之外的对象,对于许多应用程序(例如自动驾驶)至关重要。 OOD检测的一种天然基线方法是在像素软磁熵上的阈值。我们提出了一个两步的程序,可以显着改善该方法。首先,我们利用可可数据集中的样品作为OOD代理,并引入了第二个训练目标,以最大程度地提高这些样品上的软磁熵。从验证的语义分割网络开始,我们在不同的分布数据集上重新培训了许多DNN,并在评估完全不相关的OOD数据集时一致观察到了改善的OOD检测性能。其次,我们执行一个透明的后处理步骤,通过所谓的“元分类”来丢弃假阳性OOD样本。为此,我们将线性模型应用于从DNN的SoftMax概率中得出的一组手工制作的指标。在我们的实验中,我们始终观察到OOD检测性能的额外增益,在比较最佳基线与我们的结果时,将检测误差的数量减少了52%。我们仅在原始细分性能中实现这种改进的牺牲。因此,我们的方法有助于更可靠的总体系统性能更安全的DNN。

Deep neural networks (DNNs) for the semantic segmentation of images are usually trained to operate on a predefined closed set of object classes. This is in contrast to the "open world" setting where DNNs are envisioned to be deployed to. From a functional safety point of view, the ability to detect so-called "out-of-distribution" (OoD) samples, i.e., objects outside of a DNN's semantic space, is crucial for many applications such as automated driving. A natural baseline approach to OoD detection is to threshold on the pixel-wise softmax entropy. We present a two-step procedure that significantly improves that approach. Firstly, we utilize samples from the COCO dataset as OoD proxy and introduce a second training objective to maximize the softmax entropy on these samples. Starting from pretrained semantic segmentation networks we re-train a number of DNNs on different in-distribution datasets and consistently observe improved OoD detection performance when evaluating on completely disjoint OoD datasets. Secondly, we perform a transparent post-processing step to discard false positive OoD samples by so-called "meta classification". To this end, we apply linear models to a set of hand-crafted metrics derived from the DNN's softmax probabilities. In our experiments we consistently observe a clear additional gain in OoD detection performance, cutting down the number of detection errors by up to 52% when comparing the best baseline with our results. We achieve this improvement sacrificing only marginally in original segmentation performance. Therefore, our method contributes to safer DNNs with more reliable overall system performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源