论文标题
数据分析驱动控制:桥接统计建模和管理直觉
Data Analytics Driven Controlling: bridging statistical modeling and managerial intuition
论文作者
论文摘要
尽管内部数据通常可用,并且可以成为宝贵的信息来源,但在公司环境中的战略规划通常基于经验和直觉。预测合并与获取(并购)事件是战略管理的核心,但没有足够的数据分析驱动的控制。使用例如使用的主要障碍之一并购的计数数据时间序列似乎是并购的强度至少在某些业务部门,例如通讯。我们提出了一种新的自动程序,以使用新颖的统计方法来弥合这一障碍。提出的方法可以通过检测事件强度的重大变化来选择计数数据集中的自适应窗口。我们在模拟计数数据集上测试了所提出方法的功效,并将其在各种并购数据集上行动。异常行为并为评估的业务领域产生准确的预测是可靠的。它还为选择固定窗口的预测选择提供了指导。此外,它可以推广到其他业务线,例如用于管理供应链,销售预测或呼叫中心的到达,从而为管理人员提供了将统计建模纳入战略规划决策中的新方法。
Strategic planning in a corporate environment is often based on experience and intuition, although internal data is usually available and can be a valuable source of information. Predicting merger & acquisition (M&A) events is at the heart of strategic management, yet not sufficiently motivated by data analytics driven controlling. One of the main obstacles in using e.g. count data time series for M&A seems to be the fact that the intensity of M&A is time varying at least in certain business sectors, e.g. communications. We propose a new automatic procedure to bridge this obstacle using novel statistical methods. The proposed approach allows for a selection of adaptive windows in count data sets by detecting significant changes in the intensity of events. We test the efficacy of the proposed method on a simulated count data set and put it into action on various M&A data sets. It is robust to aberrant behaviour and generates accurate forecasts for the evaluated business sectors. It also provides guidance for an a-priori selection of fixed windows for forecasting. Furthermore, it can be generalized to other business lines, e.g. for managing supply chains, sales forecasts, or call center arrivals, thus giving managers new ways for incorporating statistical modeling in strategic planning decisions.