论文标题
通过发射线示踪剂揭开多相AGN的物理学
Unravelling the physics of multiphase AGN winds through emission line tracers
论文作者
论文摘要
活性银河核(AGN)中发射线的观察通常会发现快速(〜1000 km s^-1)流出延伸至千帕克尺度,在离子化的,中性的原子和分子气中可以看到。在这项工作中,我们介绍了由热风气泡驱动的AGN流出的流体动力模拟中的辐射转移计算,包括非平衡化学,以探索这些线如何跟踪多相流出的物理性能。我们发现,热气泡压缩了发射线的气体,导致比环境ISM更高的压力,或者由AGN辐射压力产生的压力。这意味着观察到的排放线比,例如[OIV] 25 $ $ m / [neii] 12 $μ$ m,[nev] 14 $μ$ m / [neii] 12 $μ$ m和[niii] 57 $ $ $ m / [nii] 122 $ $ $ $ $ $ $ $ m $ m限制了飞行式驾驶机构和驱动机构。然而,与热气泡本身相比,发射线的气体不足,并且线排放的大部分是由于压力,热和/或化学平衡的气体引起的。因此,我们的结果表明,假设存在像AGN线发射模型中通常所做的平衡条件,如果存在热风泡,则不能证明是合理的。我们还发现,流出的质量流量,动量通量和动能通量的50%是由[NII] 122 $μ$ m和[Neiii] 15 $μ$ m(在10^4 K期生产)和[CII] 158 $ $ M(从10^4 k期生产)和[Neiiii] 15 $ m $ m(在10^4 K期生产)(从10^4 k期生产)(从10^4 k期生产)(从10^4 k期生产)(从10^4 k到100 k)到100 k至100 k)。
Observations of emission lines in Active Galactic Nuclei (AGN) often find fast (~1000 km s^-1) outflows extending to kiloparsec scales, seen in ionised, neutral atomic and molecular gas. In this work we present radiative transfer calculations of emission lines in hydrodynamic simulations of AGN outflows driven by a hot wind bubble, including non-equilibrium chemistry, to explore how these lines trace the physical properties of the multiphase outflow. We find that the hot bubble compresses the line-emitting gas, resulting in higher pressures than in the ambient ISM or that would be produced by the AGN radiation pressure. This implies that observed emission line ratios such as [OIV] 25 $μ$m / [NeII] 12 $μ$m , [NeV] 14 $μ$m / [NeII] 12 $μ$m and [NIII] 57 $μ$m / [NII] 122 $μ$m constrain the presence of the bubble and hence the outflow driving mechanism. However, the line-emitting gas is under-pressurised compared to the hot bubble itself, and much of the line emission arises from gas that is out of pressure, thermal and/or chemical equilibrium. Our results thus suggest that assuming equilibrium conditions, as commonly done in AGN line emission models, is not justified if a hot wind bubble is present. We also find that >50 per cent of the mass outflow rate, momentum flux and kinetic energy flux of the outflow are traced by lines such as [NII] 122 $μ$m and [NeIII] 15 $μ$m (produced in the 10^4 K phase) and [CII] 158 $μ$m (produced in the transition from 10^4 K to 100 K).