论文标题

差距减少了不稳定纳米空气车的最小错误同时估计

Gap Reduced Minimum Error Robust Simultaneous Estimation For Unstable Nano Air Vehicle

论文作者

Pushpangathan, Jinraj V, Kandath, Harikumar, Sundaram, Suresh, Sundararajan, Narasimhan

论文摘要

本文提出了一个新的差距,减少了最小误差(GRMERS)估计器,用于资源受限的纳米航空车辆(NAV),该估计器使单个估计器能够为给定的不稳定且不确定的NAV植物模型提供同时且可靠的估计。估计的全州反馈可以为NAV提供稳定的航班。使用最小误差同时发生(MERS)估计器和差距减少(GR)补偿器,实现了GRMERS估计器。 MERS估计器即使在存在有界能量的外源性干扰信号的情况下,也提供最小的最差案例估计误差,并提供最小的最差案例估计误差。 GR补偿器减少了N线性植物模型图之间的差距,以减少MERS估计器产生的估计误差。使用LMI和健壮的估计理论建立了同时估计器的足够条件。此外,MERS估计器和GR补偿器设计被配制为非凸的可进行优化问题,并使用基于人群的遗传算法解决。通过模拟研究验证了由MERS估计器和GR补偿器组成的GRMER估计器的性能。研究结果表明,单个GRMERS估计器可以在所有飞行条件下产生误差降低的状态估计值。结果表明,单个GRMERS估计器比单独设计的H Invidition过滤器具有鲁棒性。

This paper proposes a novel Gap Reduced Minimum Error Robust Simultaneous (GRMERS) estimator for resource-constrained Nano Aerial Vehicle (NAV) that enables a single estimator to provide simultaneous and robust estimation for a given N unstable and uncertain NAV plant models. The estimated full state feedback enables a stable flight for NAV. The GRMERS estimator is implemented utilizing a Minimum Error Robust Simultaneous (MERS) estimator and Gap Reducing (GR) compensators. The MERS estimator provides robust simultaneous estimation with minimal largest worst-case estimation error even in the presence of a bounded energy exogenous disturbance signal. The GR compensators reduce the gap between the graphs of N linear plant models to decrease the estimation error generated by the MERS estimator. A sufficient condition for the existence of a simultaneous estimator is established using LMIs and robust estimation theory. Further, MERS estimator and GR compensator design are formulated as non-convex tractable optimization problems and are solved using the population-based genetic algorithms. The performance of the GRMERS estimator consisting of MERS estimator and GR compensators from the population-based genetic algorithms is validated through simulation studies. The study results indicate that a single GRMERS estimator can produce state estimates with reduced errors for all flight conditions. The results indicate that the single GRMERS estimator is robust than the individually designed H inifinity filters.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源