论文标题
通过分类内存网络进行细粒度分类
Fine-grained Classification via Categorical Memory Networks
论文作者
论文摘要
我们的愿望是利用各个类共享模式的愿望,我们提出了一个简单而有效的特定班级内存模块,用于细粒度学习。内存模块将每个类别的原型特征表示形式存储为移动平均线。我们假设相对于每个类别的相似性本身是一个有用的歧视性提示。为了检测这些相似之处,我们将注意力用作查询机制。相对于每个类原型的注意力分数被用作权重,以通过加权总和组合原型,从而为给定输入产生独特量身定制的响应特征表示。将原始功能和响应功能组合在一起,以产生用于分类的增强功能。我们将特定于类的内存模块集成到标准的卷积神经网络中,并产生一个分类的内存网络。我们的内存模块可显着提高基线CNN的准确性,通过在包括Cub-200-2011,Stanford Cars,FGVC飞机和Nabirds在内的四个基准测试的最先进方法中实现竞争精度。
Motivated by the desire to exploit patterns shared across classes, we present a simple yet effective class-specific memory module for fine-grained feature learning. The memory module stores the prototypical feature representation for each category as a moving average. We hypothesize that the combination of similarities with respect to each category is itself a useful discriminative cue. To detect these similarities, we use attention as a querying mechanism. The attention scores with respect to each class prototype are used as weights to combine prototypes via weighted sum, producing a uniquely tailored response feature representation for a given input. The original and response features are combined to produce an augmented feature for classification. We integrate our class-specific memory module into a standard convolutional neural network, yielding a Categorical Memory Network. Our memory module significantly improves accuracy over baseline CNNs, achieving competitive accuracy with state-of-the-art methods on four benchmarks, including CUB-200-2011, Stanford Cars, FGVC Aircraft, and NABirds.