论文标题
在节点曲线上的固定决定因素模量空间的Poincaré捆绑包
Poincaré bundle for the fixed determinant moduli space on a nodal curve
论文作者
论文摘要
让$ y $是算术属的积分淋巴结投影曲线$ g \ ge 2 $,$ m $节点在代数封闭的字段$ k $和$ x $ a $ y $的$ y $ $ y $的$ x $上定义。令$ n $和$ d $是$ n \ ge 2 $的coprime整数。修复$ y $上的线条捆绑$ l $ $ d $。令$ u_y(n,d,l)$表示(压缩)“固定的决定符模量空间”。我们证明,限制$ \ nathcal {u} _ {l,x} $ to $ x \ times u_y(n,d,d,l)$相对于极化$θ_l$及其限制到$ x \ $ x \ times times u'_y(n,d,d,d,d,d ins $ u'___y(n), $ n $和行家$ l $,相对于任何两极分化都是稳定的。我们表明,$ y \ times u_y(n,d,d,l)$上的PoincaréBundle$ \ MATHCAL {u} _ {l} $相对于极化$aα+aα+bθ_l$是稳定的,其中$ a $ y $ y $ y $ y $ y $ y $ y $ y $ y,b $ b $是固定的,$ a $α$。
Let $Y$ be an integral nodal projective curve of arithmetic genus $g\ge 2$ with $m$ nodes defined over an algebraically closed field $k$ and $x$ a nonsingular closed point of $Y$. Let $n$ and $d$ be coprime integers with $n\ge 2$. Fix a line bundle $L$ of degree $d$ on $Y$. Let $U_Y(n,d,L)$ denote the (compactified) "fixed determinant moduli space". We prove that the restriction $\mathcal{U}_{L,x}$ of the Poincare bundle to $x \times U_Y(n,d,L)$ is stable with respect to the polarisation $θ_L$ and its restriction to $x \times U'_Y(n,d,L)$, where $U'_Y(n,d,L)$ is the moduli space of vector bundles of rank $n$ and determinant $L$, is stable with respect to any polarisation. We show that the Poincaré bundle $\mathcal{U}_{L}$ on $Y \times U_Y(n,d,L)$ is stable with respect to the polarisation $a α+ b θ_L$ where $α$ is a fixed ample Cartier divisor on $Y$ and $a, b$ are positive integers.