论文标题
通过基于聚类的多任务功能学习改善脑电图解码
Improving EEG Decoding via Clustering-based Multi-task Feature Learning
论文作者
论文摘要
针对特定心理任务的准确脑电图(EEG)模式解码是开发脑部计算机界面(BCI)的关键步骤之一,由于在脑头皮上收集的EEG的信噪比相当低,这非常具有挑战性。机器学习提供了一种有前途的技术,可以优化脑电图模式,以更好地解码准确性。但是,现有算法并未有效探索捕获真实脑电图样本分布的基本数据结构,因此只能产生次优的解码精度。为了揭示脑电图数据的内在分布结构,我们提出了一种基于聚类的多任务特征学习算法,以改善脑电图模式解码。具体而言,我们执行基于亲和力繁殖的聚类来探索每个原始类中的子类(即簇),然后根据单一的编码策略为每个子类分配一个唯一标签。使用编码的标签矩阵,我们通过利用子类关系来共同优化未发现子类的EEG模式特征,从而设计了一种新型的多任务学习算法。然后,我们训练具有用于脑电图模式解码的优化功能的线性支持向量机。与其他最先进的方法相比,在三个EEG数据集上进行了广泛的实验研究,以验证我们的算法的有效性。改进的实验结果表明了我们的算法的出色优势,这表明其在BCI应用中的EEG模式解码方面的出色性能。
Accurate electroencephalogram (EEG) pattern decoding for specific mental tasks is one of the key steps for the development of brain-computer interface (BCI), which is quite challenging due to the considerably low signal-to-noise ratio of EEG collected at the brain scalp. Machine learning provides a promising technique to optimize EEG patterns toward better decoding accuracy. However, existing algorithms do not effectively explore the underlying data structure capturing the true EEG sample distribution, and hence can only yield a suboptimal decoding accuracy. To uncover the intrinsic distribution structure of EEG data, we propose a clustering-based multi-task feature learning algorithm for improved EEG pattern decoding. Specifically, we perform affinity propagation-based clustering to explore the subclasses (i.e., clusters) in each of the original classes, and then assign each subclass a unique label based on a one-versus-all encoding strategy. With the encoded label matrix, we devise a novel multi-task learning algorithm by exploiting the subclass relationship to jointly optimize the EEG pattern features from the uncovered subclasses. We then train a linear support vector machine with the optimized features for EEG pattern decoding. Extensive experimental studies are conducted on three EEG datasets to validate the effectiveness of our algorithm in comparison with other state-of-the-art approaches. The improved experimental results demonstrate the outstanding superiority of our algorithm, suggesting its prominent performance for EEG pattern decoding in BCI applications.