论文标题
情感:将情感纳入对话世代
AffectON: Incorporating Affect Into Dialog Generation
论文作者
论文摘要
由于其表现力,自然语言对于人类之间的明确和隐性情感状态交流至关重要。相同的语言询问(例如,您好吗?)可能会根据对话伴侣的情感状态和对话的背景而引起不同影响的反应。但是,大多数对话系统不认为影响是响应产生的构成方面。在本文中,我们介绍了情感,这是一种在推断过程中产生情感反应的方法。为了在有针对性的影响中生成语言,我们的方法利用了概率语言模型和情感空间。 altimpon是语言模型不可知论,因为它可以与任何语言模型(例如序列到序列模型,神经语言模型,n-grams)生成的概率一起工作。因此,它可以用于情感对话和情感语言的产生。我们尝试了情感对话的生成,并客观地和主观评估了生成的文本。对于评估的主观部分,我们设计了一个自定义用户界面以进行评级,并为此类接口的设计提供了建议。主观和客观的结果表明,我们的方法成功地将产生的语言朝着有针对性的情感推向,而句法连贯性很少。
Due to its expressivity, natural language is paramount for explicit and implicit affective state communication among humans. The same linguistic inquiry (e.g., How are you?) might induce responses with different affects depending on the affective state of the conversational partner(s) and the context of the conversation. Yet, most dialog systems do not consider affect as constitutive aspect of response generation. In this paper, we introduce AffectON, an approach for generating affective responses during inference. For generating language in a targeted affect, our approach leverages a probabilistic language model and an affective space. AffectON is language model agnostic, since it can work with probabilities generated by any language model (e.g., sequence-to-sequence models, neural language models, n-grams). Hence, it can be employed for both affective dialog and affective language generation. We experimented with affective dialog generation and evaluated the generated text objectively and subjectively. For the subjective part of the evaluation, we designed a custom user interface for rating and provided recommendations for the design of such interfaces. The results, both subjective and objective demonstrate that our approach is successful in pulling the generated language toward the targeted affect, with little sacrifice in syntactic coherence.