论文标题

在某些一般的乘法解决方案结果中,罗宾问题的结果

On some general multiplying solutions results of a Robin problem

论文作者

Aydin, Ismail, Unal, Cihan

论文摘要

通过应用Ricceri的各种原理,我们证明了以下知更刺问题的解决方案 \ begin {equination*} \ left \ {\ begin {array} {cc} - \ func {div} \ left(ω__{1}(x)\ left \ left \ vert \ nabla u \ nabla u \ r \ right \ right \ right \ right \ right \ right \ rirt &x \ inω\\ω_{1}(x)\ left \ vert \ nabla u \ right \ right \ vert ^{ x \ in \ partialω,\ end {array} \ right。 \ end {equation*} 在$ w_ {ω_{1}中,ω__{2}}}^{1,p(。

By applying Ricceri's variational principle, we demonstrate the existence of solutions for the following Robin problem \begin{equation*}\left\{ \begin{array}{cc}-\func{div}\left( ω_{1}(x)\left\vert \nabla u\right\vert^{p(x)-2}\nabla u\right) =λω_{2}(x)f(x,u), & x\in Ω\\ ω_{1}(x)\left\vert \nabla u\right\vert ^{p(x)-2}\frac{\partial u}{ \partial \upsilon }+β(x)\left\vert u\right\vert ^{p(x)-2}u=0, & x\in \partial Ω, \end{array} \right. \end{equation*} in $W_{ω_{1},ω_{2}}^{1,p(.)}\left( Ω\right) $ under some appropriate conditions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源