论文标题
超快旋转电流和电荷转换在3D-5D接口,由时间域Terahertz光谱探测
Ultrafast spin-currents and charge conversion at 3d-5d interfaces probed by time-domain terahertz spectroscopy
论文作者
论文摘要
对磁性换向功能所需的自旋轨道扭矩特性进行了广泛研究。这些材料中的当前进度取决于接口工程以优化自旋传输。在这里,由于其反旋转式效应的特性,我们在铁磁传输金属界面上对超快自旋荷利转化现象进行了分析。特别是研究了基于PT的系统的固有的旋转霍尔效应和Nife/au中的Au:W和ta的外部逆旋转式效应:( W,TA)双层。通过互补技术探测了自旋付费转换 - 在稳定状态下,GHz状态的THZ脉冲发射和铁电磁共振的旋转测量测量的动态状态中的超快THZ时域光谱 - 确定材料特性,电阻性,电阻率,金属旋转率和微型旋转率的旋转率的作用。这些测量结果表明,在自旋混合电导率的任期内,针对不同样品集的THZ时域光谱和铁磁自旋泵化之间的对应关系。后一个数量是一个关键参数,确定了Spintronic界面的THZ发射强度。 Ab-Initio的计算,模拟和分析多层载体在时域中载体的旋转扩张和自旋松弛进一步支持这一点,从而确定界面上的主要趋势和自旋传输的作用。这项工作说明了基于自旋的THZ发射的时域光谱是一种强大的技术,可在主动自旋界面上探测自旋动力学,并提取关键材料特性以进行自旋荷兰转换。
Spintronic structures are extensively investigated for their spin orbit torque properties, required for magnetic commutation functionalities. Current progress in these materials is dependent on the interface engineering for the optimization of spin transmission. Here, we advance the analysis of ultrafast spin-charge conversion phenomena at ferromagnetic-transition metal interfaces due to their inverse spin-Hall effect properties. In particular the intrinsic inverse spin Hall effect of Pt-based systems and extrinsic inverse spin-Hall effect of Au:W and Au:Ta in NiFe/Au:(W,Ta) bilayers are investigated. The spin-charge conversion is probed by complementary techniques -- ultrafast THz time domain spectroscopy in the dynamic regime for THz pulse emission and ferromagnetic resonance spin-pumping measurements in the GHz regime in the steady state -- to determine the role played by the material properties, resistivities, spin transmission at metallic interfaces and spin-flip rates. These measurements show the correspondence between the THz time domain spectroscopy and ferromagnetic spin-pumping for the different set of samples in term of the spin mixing conductance. The latter quantity is a critical parameter, determining the strength of the THz emission from spintronic interfaces. This is further supported by ab-initio calculations, simulations and analysis of the spin-diffusion and spin relaxation of carriers within the multilayers in the time domain, permitting to determine the main trends and the role of spin transmission at interfaces. This work illustrates that time domain spectroscopy for spin-based THz emission is a powerful technique to probe spin-dynamics at active spintronic interfaces and to extract key material properties for spin-charge conversion.