论文标题

约翰逊和格拉斯曼图中的完全常规代码,带有小覆盖RADII

Completely regular codes in Johnson and Grassmann graphs with small covering radii

论文作者

Mogilnykh, I. Yu.

论文摘要

让L成为Grassmann图中的Desarguesian 2-Spear,$ J_Q(n,2)$。我们证明,不包含l子空间的4个空格的集合是$ j_q(n,4)$中的完全常规代码。同样,我们在Johnson Graph $ j(n,6)$中构建了一个完全常规的代码,该代码是从Steiner Quadruple系统的扩展锤码系统中构建的。我们使用二进制线性编程在Grassmann图中获得了几个涵盖Grassmann图$ J_2(6,3)$的全新常规代码。

Let L be a Desarguesian 2-spread in the Grassmann graph $J_q(n,2)$. We prove that the collection of the 4-subspaces, which do not contain subspaces from L is a completely regular code in $J_q(n,4)$. Similarly, we construct a completely regular code in the Johnson graph $J(n,6)$ from the Steiner quadruple system of the extended Hamming code. We obtain several new completely regular codes covering radius 1 in the Grassmann graph $J_2(6,3)$ using binary linear programming.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源