论文标题
约翰逊和格拉斯曼图中的完全常规代码,带有小覆盖RADII
Completely regular codes in Johnson and Grassmann graphs with small covering radii
论文作者
论文摘要
让L成为Grassmann图中的Desarguesian 2-Spear,$ J_Q(n,2)$。我们证明,不包含l子空间的4个空格的集合是$ j_q(n,4)$中的完全常规代码。同样,我们在Johnson Graph $ j(n,6)$中构建了一个完全常规的代码,该代码是从Steiner Quadruple系统的扩展锤码系统中构建的。我们使用二进制线性编程在Grassmann图中获得了几个涵盖Grassmann图$ J_2(6,3)$的全新常规代码。
Let L be a Desarguesian 2-spread in the Grassmann graph $J_q(n,2)$. We prove that the collection of the 4-subspaces, which do not contain subspaces from L is a completely regular code in $J_q(n,4)$. Similarly, we construct a completely regular code in the Johnson graph $J(n,6)$ from the Steiner quadruple system of the extended Hamming code. We obtain several new completely regular codes covering radius 1 in the Grassmann graph $J_2(6,3)$ using binary linear programming.