论文标题
通过不确定性整合金字塔一致性,有效的半监督鼻咽癌的总目标体积分割
Efficient Semi-Supervised Gross Target Volume of Nasopharyngeal Carcinoma Segmentation via Uncertainty Rectified Pyramid Consistency
论文作者
论文摘要
总目标体积(GTV)分割在鼻咽癌(NPC)的放射疗法计划中起不可替代的作用。尽管卷积神经网络(CNN)在这项任务中取得了良好的性能,但他们依靠大量标记的图像进行培训,这是昂贵且耗时的。在本文中,我们提出了一个具有不确定性的新型框架,用于半监督NPC GTV分割的不确定性校正金字塔一致性(URPC)正则化。具体而言,我们扩展了一个骨干分割网络,以在不同尺度上产生金字塔预测。金字塔预测网络(PPNET)是由标记图像的地面真相和未标记图像的多尺度一致性损失来监督的,这是由于以下事实,即相同输入的不同尺度的预测应该相似且一致。但是,由于这些预测的分辨率不同,鼓励它们在每个像素上直接保持一致的稳健性低,并且可能会失去一些细节。为了解决这个问题,我们进一步设计了一种新颖的不确定性整流模块,以使框架能够从不同尺度的有意义且可靠的共识区域中逐渐学习。具有258个NPC MR图像的数据集上的实验结果表明,只有10%或20%的图像标记为标记的图像,我们的方法通过利用未标记的图像来在很大程度上改善了分割性能,并且它还超出了五种最先进的半固定分割方法。此外,当只有50%的图像标记时,URPC的平均骰子得分为82.74%,接近完全监督的学习。
Gross Target Volume (GTV) segmentation plays an irreplaceable role in radiotherapy planning for Nasopharyngeal Carcinoma (NPC). Despite that Convolutional Neural Networks (CNN) have achieved good performance for this task, they rely on a large set of labeled images for training, which is expensive and time-consuming to acquire. In this paper, we propose a novel framework with Uncertainty Rectified Pyramid Consistency (URPC) regularization for semi-supervised NPC GTV segmentation. Concretely, we extend a backbone segmentation network to produce pyramid predictions at different scales. The pyramid predictions network (PPNet) is supervised by the ground truth of labeled images and a multi-scale consistency loss for unlabeled images, motivated by the fact that prediction at different scales for the same input should be similar and consistent. However, due to the different resolution of these predictions, encouraging them to be consistent at each pixel directly has low robustness and may lose some fine details. To address this problem, we further design a novel uncertainty rectifying module to enable the framework to gradually learn from meaningful and reliable consensual regions at different scales. Experimental results on a dataset with 258 NPC MR images showed that with only 10% or 20% images labeled, our method largely improved the segmentation performance by leveraging the unlabeled images, and it also outperformed five state-of-the-art semi-supervised segmentation methods. Moreover, when only 50% images labeled, URPC achieved an average Dice score of 82.74% that was close to fully supervised learning.