论文标题
监视多模流程:具有连续学习能力的修改PCA算法
Monitoring multimode processes: a modified PCA algorithm with continual learning ability
论文作者
论文摘要
对于多模过程,人们通常建立与本地模式相对应的本地监视模型。但是,当构建当前模式的监视模型时,先前模式的重要特征可能会被灾难性地忘记。这将导致性能突然下降。使本地监视模型记住以前模式的功能可能是一种有效的方式。选择主组件分析(PCA)作为基本监视模型,我们尝试解决此问题。修改后的PCA算法具有持续的学习能力来监视多模型过程,该过程采用弹性重量巩固(EWC)来克服对连续模式的PCA的灾难性忘记。它称为PCA-EWC,在当前模式建立PCA模型时,保留了先前模式的重要特征。最佳参数是通过凸函数的差异获得的。此外,提出的PCA-EWC扩展到一般多模过程,并提出了该过程。讨论了计算复杂性和关键参数,以进一步了解PCA与所提出的算法之间的关系。指出了潜在的局限性和相关解决方案,以进一步了解该算法。在中国使用了数值案例研究和实用的工业系统来说明拟议算法的有效性。
For multimode processes, one generally establishes local monitoring models corresponding to local modes. However, the significant features of previous modes may be catastrophically forgotten when a monitoring model for the current mode is built. It would result in an abrupt performance decrease. It could be an effective manner to make local monitoring model remember the features of previous modes. Choosing the principal component analysis (PCA) as a basic monitoring model, we try to resolve this problem. A modified PCA algorithm is built with continual learning ability for monitoring multimode processes, which adopts elastic weight consolidation (EWC) to overcome catastrophic forgetting of PCA for successive modes. It is called PCA-EWC, where the significant features of previous modes are preserved when a PCA model is established for the current mode. The optimal parameters are acquired by differences of convex functions. Moreover, the proposed PCA-EWC is extended to general multimode processes and the procedure is presented. The computational complexity and key parameters are discussed to further understand the relationship between PCA and the proposed algorithm. Potential limitations and relevant solutions are pointed to understand the algorithm further. Numerical case study and a practical industrial system in China are employed to illustrate the effectiveness of the proposed algorithm.