论文标题
基于视觉的适应人类启发的机器人操纵的内核协同作用
Vision Based Adaptation to Kernelized Synergies for Human Inspired Robotic Manipulation
论文作者
论文摘要
与机器人相反,由于其出色的灵活性和感觉运动组织,人类在执行精细的操纵任务方面非常出色。使机器人能够获取此类功能,因此需要一个框架,该框架不仅复制了人类行为,而且还将多感觉信息集成到自主对象互动中。为了解决此类局限性,本研究提出了具有视觉感知的先前开发的内核协同框架,以自动适应未知对象。受人类启发的内核协同作用保留了相同减少的子空间,以抓握和操纵。为了检测场景中的对象,使用了简化的感知管道,该管道分别利用欧几里得聚类和SVM来利用RANSAC算法进行对象分割和识别。此外,对内核协同作用与其他最先进的方法进行了比较分析,以确认其对机器人操纵任务的灵活性和有效性。在机器人手上进行的实验证实了经过修改的内核协同框架与与环境感知有关的不确定性的鲁棒性。
Humans in contrast to robots are excellent in performing fine manipulation tasks owing to their remarkable dexterity and sensorimotor organization. Enabling robots to acquire such capabilities, necessitates a framework that not only replicates the human behaviour but also integrates the multi-sensory information for autonomous object interaction. To address such limitations, this research proposes to augment the previously developed kernelized synergies framework with visual perception to automatically adapt to the unknown objects. The kernelized synergies, inspired from humans, retain the same reduced subspace for object grasping and manipulation. To detect object in the scene, a simplified perception pipeline is used that leverages the RANSAC algorithm with Euclidean clustering and SVM for object segmentation and recognition respectively. Further, the comparative analysis of kernelized synergies with other state of art approaches is made to confirm their flexibility and effectiveness on the robotic manipulation tasks. The experiments conducted on the robot hand confirm the robustness of modified kernelized synergies framework against the uncertainties related to the perception of environment.