论文标题

EFROS定理应用于由$ s^{ - μ} \,\ exp(-s^ν)$的反向拉普拉斯变换表示的函数

Application of the Efros theorem to the function represented by the inverse Laplace transform of $s^{-μ}\,\exp(-s^ν)$

论文作者

Apelblat, Alexander, Mainardi, Francesco

论文摘要

使用由Wlodarski得出的EFROS定理的特殊情况和操作演算,可以得出许多无限积分,有限积分和积分身份,以代表逆laplace Transform。积分身份主要是在与Mittag-Leffler和Volterra函数的卷积积分方面。确定积分的积分包括基本功能(功率,指数,对数,三角学和双曲功能)以及误差函数,mittag-leffler函数和伏特拉函数。 $ s^{ - μ} \ exp(-s^ν)$的某些属性带有$μ\ ge0 $和$ 0 <ν<1 $

Using a special case of the Efros theorem which was derived by Wlodarski, and operational calculus, it was possible to derive many infinite integrals, finite integrals and integral identities for the function represented by the inverse Laplace transform. The integral identities are mainly in terms of convolution integrals with the Mittag-Leffler and Volterra functions. The integrands of determined integrals include elementary functions (power, exponential, logarithmic, trigonometric and hyperbolic functions) and the error functions, the Mittag-Leffler functions and the Volterra functions. Some properties of the inverse Laplace transform of $s^{-μ} \exp(-s^ν)$ with $μ\ge0$ and $0<ν<1$ are presented

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源