论文标题
交通率网络层析成像和高阶累积物
Traffic Rate Network Tomography with Higher-Order Cumulants
论文作者
论文摘要
网络断层扫描旨在通过链接流量测量值估算源用途交通率。瓦尔迪(Vardi)于1996年提出了这个反问题,用于确定性和随机路由制度下运行的网络上的泊松交通。在本文中,我们将Vardi的二阶匹配速率估计方法扩展到高阶累积匹配,以增加映射的列等级,从而提高速率估计精度。我们开发系统的一组线性累积匹配方程,并根据Khatri-Rao产品紧凑。考虑到最小二乘估计和迭代最小i差异估计。我们在最小二乘率估计经验累积的估计中,对平方平方误差(MSE)开发了上限。我们为NSFNET证明,将Vardi的方法补充了三阶经验累积液,相对于第二阶匹配方法的理论最小值,其平均归一化MSE降低了约12%-18%。当Vardi的二阶匹配方法基于理论而不是经验时刻时,获得了最低MSE。
Network tomography aims at estimating source-destination traffic rates from link traffic measurements. This inverse problem was formulated by Vardi in 1996 for Poisson traffic over networks operating under deterministic as well as random routing regimes. In this paper we expand Vardi's second-order moment matching rate estimation approach to higher-order cumulant matching with the goal of increasing the column rank of the mapping and consequently improving the rate estimation accuracy. We develop a systematic set of linear cumulant matching equations and express them compactly in terms of the Khatri-Rao product. Both least squares estimation and iterative minimum I-divergence estimation are considered. We develop an upper bound on the mean squared error (MSE) in least squares rate estimation from empirical cumulants. We demonstrate for the NSFnet that supplementing Vardi's approach with third-order empirical cumulant reduces its averaged normalized MSE relative to the theoretical minimum of the second-order moment matching approach by about 12%-18%. This minimum MSE is obtained when Vardi's second-order moment matching approach is based on the theoretical rather than the empirical moments.