论文标题

保守匪徒问题的一定大小的解决方案

A One-Size-Fits-All Solution to Conservative Bandit Problems

论文作者

Du, Yihan, Wang, Siwei, Huang, Longbo

论文摘要

在本文中,我们研究了一个具有样本路径奖励约束的保守匪徒问题(CBP)的家庭,即,学习者的奖励表现至少必须在任何时候与给定的基线一样。我们为CBP提出了一个千篇一律的解决方案,并将其应用呈现给三个包含的问题,即保守的多臂匪徒(CMAB),保守的线性匪徒(CLB)和保守的上下文组合量强盗(CCCB)。与以前考虑到预期奖励的高概率约束的作品不同,我们专注于对实际收到的奖励的样本限制,并获得更好的理论保证($ t $独立的添加剂后悔,而不是$ t $依赖性)和经验绩效。此外,我们扩展了结果,并考虑了一种新型的保守均值划线问题(MV-CBP),该问题通过预期的奖励和可变性来衡量学习绩效。对于这个扩展的问题,我们提供了一种新颖的算法,其中包含$ O(1/T)$归一化的添加剂($ t $依赖于累积形式),并通过经验评估来验证这一结果。

In this paper, we study a family of conservative bandit problems (CBPs) with sample-path reward constraints, i.e., the learner's reward performance must be at least as well as a given baseline at any time. We propose a One-Size-Fits-All solution to CBPs and present its applications to three encompassed problems, i.e. conservative multi-armed bandits (CMAB), conservative linear bandits (CLB) and conservative contextual combinatorial bandits (CCCB). Different from previous works which consider high probability constraints on the expected reward, we focus on a sample-path constraint on the actually received reward, and achieve better theoretical guarantees ($T$-independent additive regrets instead of $T$-dependent) and empirical performance. Furthermore, we extend the results and consider a novel conservative mean-variance bandit problem (MV-CBP), which measures the learning performance with both the expected reward and variability. For this extended problem, we provide a novel algorithm with $O(1/T)$ normalized additive regrets ($T$-independent in the cumulative form) and validate this result through empirical evaluation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源