论文标题
关于最大模量和随机整个功能的最大模量和零的不平等
Inequalities Concerning Maximum Modulus and Zeros of Random Entire Functions
论文作者
论文摘要
令$f_Ω(z)= \ sum \ limits_ {j = 0}^{\ infty}χ_j(ω)a_j z^j $是一个随机的整个函数,其中$χ_j(ω)$是独立的,并且在可能性空间$(ω,\ nathcalcalcalcal calcal {f} $)上定义了$χ_j(ω)$。在本文中,我们首先定义了一个随机整个功能的家族,其中包括高斯,rademacher,Steinhaus整个功能。然后,我们证明,对于家庭中几乎所有功能,对于任何常数$ c> 1 $,存在一个常数$ r_0 = r_0(ω)$和一个有限对数的$ e \ subset [e,\ infty)$的$ r> r_0 $和$ r_0 $和$ r \ r \ r \ notin e $,$,$,f _ f _ f _ f _ f _ f y | f), (c/a)^{\ frac1 {b}} \ log^{\ frac1 {b}} \ log m(r,f) +\ log \ log \ log \ log m(r,f),\ qquad a.s. $$,其中$ a,b $是常数,$ m(r,f)$是最大模量,$ n(r,0,f)$是$ f $的加权计数 - 零函数。作为我们主要结果的副产品,我们证明了Nevanlinna的第二个主要定理,用于随机整个功能。因此,家庭中几乎所有功能的特征功能都由称重的计数函数界定,而不是经典的nevanlinna理论中的两个加权计数函数。例如,我们表明,对于几乎所有高斯全部功能$f_Ω$,对于任何$ε> 0 $,有$ r_0 $,因此,对于$ r_0 $,$ r_0 $,$$ t(r,f)\ le n(r,0,f_Ω)+(\ frac12+hog log t(r,r,f)。 $$
Let $f_ω(z)=\sum\limits_{j=0}^{\infty}χ_j(ω) a_j z^j$ be a random entire function, where $χ_j(ω)$ are independent and identically distributed random variables defined on a probability space $(Ω, \mathcal{F}, μ)$. In this paper, we first define a family of random entire functions, which includes Gaussian, Rademacher, Steinhaus entire functions. Then, we prove that, for almost all functions in the family and for any constant $C>1$, there exist a constant $r_0=r_0(ω)$ and a set $E\subset [e, \infty)$ of finite logarithmic measure such that, for $r>r_0$ and $r\notin E$, $$ |\log M(r, f)- N(r,0, f_ω)|\le (C/A)^{\frac1{B}}\log^{\frac1{B}}\log M(r,f) +\log\log M(r, f), \qquad a.s. $$ where $A, B$ are constants, $M(r, f)$ is the maximum modulus, and $N(r, 0, f)$ is the weighted counting-zero function of $f$. As a by-product of our main results, we prove Nevanlinna's second main theorem for random entire functions. Thus, the characteristic function of almost all functions in the family is bounded above by a weighed counting function, rather than by two weighted counting functions in the classical Nevanlinna theory. For instance, we show that, for almost all Gaussian entire functions $f_ω$ and for any $ε>0$, there is $r_0$ such that, for $r>r_0$, $$ T(r, f) \le N(r,0, f_ω)+(\frac12+ε) \log T(r, f). $$