论文标题
Sobolev $(P,Q)$ - 扩展域的边界的体积
The volume of the boundary of a Sobolev $(p,q)$-extension domain
论文作者
论文摘要
令$ n \ geq 2 $和$ 1 \ leq q <p <\ fz $。我们证明,如果$ω\ subset \ mathbb r^n $是sobolev $(p,q)$ - 扩展域,并且在$ q \ leq n-1 $,$ n> 2 $,然后$ | | \ | \partialω| = 0 $的情况下,边界上的其他能力限制。在情况下,在$ 1 \ leq q <n-1 $中,我们举了一个sobolev $(p,q)$ - 带有$ | \partialΩ|> 0 $的扩展域。
Let $n\geq 2$ and $1\leq q<p<\fz$. We prove that if $Ω\subset\mathbb R^n$ is a Sobolev $(p, q)$-extension domain, with additional capacitory restrictions on boundary in the case $q\leq n-1$, $n>2$, then $|\partialΩ|=0$. In the case $1\leq q<n-1$, we give an example of a Sobolev $(p,q)$-extension domain with $|\partialΩ|>0$.