论文标题

通过轻重量的时间不确定性估计来改进视频实例细分

Improving Video Instance Segmentation by Light-weight Temporal Uncertainty Estimates

论文作者

Maag, Kira, Rottmann, Matthias, Varghese, Serin, Hueger, Fabian, Schlicht, Peter, Gottschalk, Hanno

论文摘要

使用神经网络进行实例分割是环境感知中的重要任务。在许多作品中,已经观察到,神经网络可以预测具有较高置信值和真实阳性的假阳性实例。因此,重要的是要准确地对神经网络的不确定性进行建模,以防止安全问题并促进可解释性。在诸如自动驾驶之类的应用中,神经网络的可靠性是最高兴趣的。在本文中,我们提出了一种时间范围的方法来模拟实例分割网络的不确定性,并将其应用于误报的检测以及预测质量的估计。在线应用程序中图像序列的可用性允许通过多个帧跟踪实例。根据形状和不确定性信息的历史,我们构建了时间实例的聚合指标。后者用作后处理模型的输入,这些模型以实例交集的估计预测质量而不是联合。所提出的方法仅需要一个易于训练的神经网络(可以在单帧上运行)和视频序列输入。在我们的实验中,我们通过从对象检测中替换传统得分值并改善实例分割网络的整体性能,进一步证明了提出的方法的使用。

Instance segmentation with neural networks is an essential task in environment perception. In many works, it has been observed that neural networks can predict false positive instances with high confidence values and true positives with low ones. Thus, it is important to accurately model the uncertainties of neural networks in order to prevent safety issues and foster interpretability. In applications such as automated driving, the reliability of neural networks is of highest interest. In this paper, we present a time-dynamic approach to model uncertainties of instance segmentation networks and apply this to the detection of false positives as well as the estimation of prediction quality. The availability of image sequences in online applications allows for tracking instances over multiple frames. Based on an instances history of shape and uncertainty information, we construct temporal instance-wise aggregated metrics. The latter are used as input to post-processing models that estimate the prediction quality in terms of instance-wise intersection over union. The proposed method only requires a readily trained neural network (that may operate on single frames) and video sequence input. In our experiments, we further demonstrate the use of the proposed method by replacing the traditional score value from object detection and thereby improving the overall performance of the instance segmentation network.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源