论文标题
可编程的非交流元素
Programmable Nonreciprocal Metaprism
论文作者
论文摘要
光学棱镜是由玻璃制成的,并将暂时频率映射到空间频率中,通过将事件的白光分解为其组成颜色,并将其折射到不同的方向上。传统的棱镜遭受了体积笨重和重型结构,其物质参数由Lorentz互惠定理决定。考虑到棱镜在波浪工程中的各种应用及其在无形的频谱和天线应用中的不断增长的应用中,需要以可重新配置的方式提供棱镜功能,并具有非互联体/互惠响应。在这里,我们提出了一个非近地跨表面的棱镜,该棱镜由一系列相位和振幅梯度频率依赖性的空间变体辐射超级细胞组成。在常规的光学棱镜中,非注射型设备和超材料,空间分解和非交流函数是固定且不可用的。在这里,我们提出了一个可编程的跨表面,该跨表面与放大器集成在一起,以实现可控的非偏置空间分解,其中,可以在任意和可编程的传输角度以所需的变速器增益在任意和可编程的传输角度下传输入射多色波的每个频率分量。这样的多色跨表棱镜由频率依赖性的空间晶体管相位变速杆和放大器组成,用于波动的空间分解。有趣的特征包括具有可编程折射,功率扩增和指令和多样化辐射梁的三维棱镜功能。此外,可以通过现场可编程的门阵列(FPGA)来数字控制元表棱镜,从而使元图成为雷达,全息应用程序和无线电信系统的合适解决方案。
Optical prisms are made of glass and map temporal frequencies into spatial frequencies by decomposing incident white light into its constituent colors and refract them into different directions. Conventional prisms suffer from their volumetric bulky and heavy structure and their material parameters are dictated by the Lorentz reciprocity theorem. Considering various applications of prisms in wave engineering and their growing applications in the invisible spectrum and antenna applications, there is a demand for compact apparatuses that are capable of providing prism functionality in a reconfigurable manner, with a nonreciprocal/reciprocal response. Here, we propose a nonreciprocal metasurface-based prism constituted of an array of phase- and amplitude-gradient frequency-dependent spatially variant radiating super-cells. In conventional optical prisms, nonreciprocal devices and metamaterials, the spatial decomposition and nonreciprocity functions are fixed and noneditable. Here, we present a programmable metasurface integrated with amplifiers to realize controllable nonreciprocal spatial decomposition, where each frequency component of the incident polychromatic wave can be transmitted under an arbitrary and programmable angle of transmission with a desired transmission gain. Such a polychromatic metasurface prism is constituted of frequency-dependent spatially variant transistor-based phase shifters and amplifiers for the spatial decomposition of the wave components. Interesting features include three-dimensional prism functionality with programmable angles of refraction, power amplification, and directive and diverse radiation beams. Furthermore, the metasurface prism can be digitally controlled via a field-programmable gate array (FPGA), making the metasurface a suitable solution for radars, holography applications, and wireless telecommunication systems.