论文标题

通过边际治疗效应的福利分析

Welfare Analysis via Marginal Treatment Effects

论文作者

Sasaki, Yuya, Ura, Takuya

论文摘要

在经验数据中考虑具有内生性(即未观察到的混杂性)的因果结构,其中可以使用仪器变量。在这种情况下,我们表明可以通过边缘治疗效应(MTE,Bjorklund和Moffitt,1987)作为操作员内核来识别和表示平均的社会福利功能。此表示结果可以应用于治疗选择的各种统计决策规则,包括插入式规则,贝叶斯规则和经验福利最大化(EWM)规则,如Hirano和Porter(2020年,第2.3节)。为了关注Kitagawa和Tetenov(2018)的EWM框架的应用,我们以曼斯基精神(2004年)提供了最坏情况下的平均福利损失(遗憾)的收敛速度。

Consider a causal structure with endogeneity (i.e., unobserved confoundedness) in empirical data, where an instrumental variable is available. In this setting, we show that the mean social welfare function can be identified and represented via the marginal treatment effect (MTE, Bjorklund and Moffitt, 1987) as the operator kernel. This representation result can be applied to a variety of statistical decision rules for treatment choice, including plug-in rules, Bayes rules, and empirical welfare maximization (EWM) rules as in Hirano and Porter (2020, Section 2.3). Focusing on the application to the EWM framework of Kitagawa and Tetenov (2018), we provide convergence rates of the worst case average welfare loss (regret) in the spirit of Manski (2004).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源