论文标题

了解PP(P \ b)差异截面中的两个斜率

Understanding two slopes in the pp (p\bar p) differential cross sections

论文作者

Simonov, Yu. A.

论文摘要

最近的实验在$ pp $弹性差异横截面中发现了两个指数,其中有两个不同的坡度参数,分别是$(16-20)$ 〜gev $^{ - 2} $和$(4-4.8)$ 〜gev $^$^gev $^{ - 2} $在区域中$ -T 0.5 $ - l la 0.5 $^$^$^$^$^$^$^$^$^$^$^$^gev gev gev gev gev gev gev gev $^$^gev gev gev。我们建议使用两种类型的粒子交换的$ PP $弹性散射的简单模型:1)当交换粒子从Proton $ p_1 $的Quark转移到动量$ \ veq $时,在另一种Proton $ P_2 $中的一个Quark中,产生了SLOPE $ B_1 $; 2)当转移从$ P_1 $中的两个夸克发生到$ p_2 $中的两个夸克,从而为指数提供了斜率$ b_2 $。由此产生的振幅与两个质子的形式的乘积成正比,具体取决于$ \ veq $,但在情况下具有不同的系数1)和2)。使用唯一参数 - 质子电荷半径$ r^2_ {ch} = 0.93 $ 〜fm $^2 $,一个人获得$ b_1 = 16 $ 〜gev $^{ - 2} $,〜$ b_2 = 4 $ 〜gev $^$^{ - 2} $,其比例的严格值,$ \ frac $ \ frac = b_1}} $ r_ {ch} $。这些预测在$ pp $和$ \ bar p p $差异横截面中的数据都与数据相当接近。讨论了与实验数据和理论方法的比较,以及对理论的未来发展的可能影响。

Recent experiments have discovered two exponents in the $pp$ elastic differential cross sections with two different slope parameters, of the order $(16-20)$~GeV$^{-2}$ and $(4-4.8)$~GeV$^{-2}$ in the regions $ -t \la 0.5 $~GeV$^2$ and $ -t \ga 1$~GeV$^2$, respectively. We suggest a simple model of the $pp$ elastic scattering with two types of particle exchanges: 1) when the exchanged particle transfers the momentum $\veQ$ from a quark of the proton $p_1$ to one quark in another proton $p_2$, producing the slope $B_1$; 2) when the transfer occurs from two quarks in the $p_1$ to two quarks in the $p_2$, giving the exponent with the slope $B_2$. The resulting amplitude is proportional to the product of the form factors of two protons, depending on $\veQ$, but with different coefficients in the cases 1) and 2). Using the only parameter - the proton charge radius $r^2_{ch}= 0.93$~fm$^2$, one obtains $B_1 = 16$~GeV$^{-2}$,~$ B_2 = 4$~GeV$^{-2}$ with the strict value of the ratio, $\frac{B_1}{B_2} = 4.0$, independent of $r_{ch}$. These predictions are surprisingly close to the data both in the $pp$ and in the $\bar p p$ differential cross sections. Comparison to experimental data and theoretical approaches is discussed, together with possible implications for the future development of the theory.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源