论文标题
$ l^p $ - 酒精学,热半群和分层空间
$L^p$-cohomology, heat semigroup and stratified spaces
论文作者
论文摘要
令$(m,g)$为有限体积的不完整的riemannian歧管,让$ 2 \ leq p <\ infty $。在本文的第一部分中,我们证明,在某些假设下,将$ l^p $ - 差异的空间包括在$ l^2 $ - 差异的形式中的空间中,可以在相应的$ l^p $和$ l^2 $共同体学组之间产生注射/过滤的图。然后,在第二部分中,我们将这些结果的各种应用提供给紧凑型Thom thommather分层的伪造和复杂的投射性品种的曲率和相交的共同体,并且仅具有孤立的奇异性。
Let $(M,g)$ be an incomplete Riemannian manifold of finite volume and let $2\leq p<\infty$. In the first part of this paper we prove that under certain assumptions the inclusion of the space of $L^p$-differential forms into that of $L^2$-differential forms gives rise to an injective/surjective map between the corresponding $L^p$ and $L^2$ cohomology groups. Then in the second part we provide various applications of these results to the curvature and the intersection cohomology of compact Thom-Mather stratified pseudomanifolds and complex projective varieties with only isolated singularities.