论文标题

改善各个尺度的全面分割

Improving Panoptic Segmentation at All Scales

论文作者

Porzi, Lorenzo, Bulò, Samuel Rota, Kontschieder, Peter

论文摘要

基于农作物的培训策略将培训分辨率从GPU记忆消耗中解释,从而可以在多兆像素图像上使用大容量的泛型分割网络。但是,使用农作物可以引入偏见,以截断或缺少大物体。为了解决这个问题,我们提出了一种新型的农作物界限框回归损失(CABB损失),该损失(CABB损失)促进预测与裁剪物体的可见部分一致,同时又不过度降低它们以扩展在作物之外。我们进一步介绍了一种新颖的数据采样和增强策略,该策略通过抵消对象大小的不平衡分布来改善范围的概括。将这两种贡献与精心设计的自上而下的全景分割结构相结合,我们获得了有关具有挑战性的Mapillary Vistas(MVD),Indian Driving和CityScapes数据集的新最先进的结果,超过了MVD上最佳方法的最佳方法, +4.5%PQ和 + +5.2%的地图。

Crop-based training strategies decouple training resolution from GPU memory consumption, allowing the use of large-capacity panoptic segmentation networks on multi-megapixel images. Using crops, however, can introduce a bias towards truncating or missing large objects. To address this, we propose a novel crop-aware bounding box regression loss (CABB loss), which promotes predictions to be consistent with the visible parts of the cropped objects, while not over-penalizing them for extending outside of the crop. We further introduce a novel data sampling and augmentation strategy which improves generalization across scales by counteracting the imbalanced distribution of object sizes. Combining these two contributions with a carefully designed, top-down panoptic segmentation architecture, we obtain new state-of-the-art results on the challenging Mapillary Vistas (MVD), Indian Driving and Cityscapes datasets, surpassing the previously best approach on MVD by +4.5% PQ and +5.2% mAP.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源