论文标题

算法PULSAR时机

Algorithmic Pulsar Timing

论文作者

Phillips, Camryn, Ransom, Scott

论文摘要

PULSAR时序是迭代拟合脉冲到达时间的一个过程,可以通过在到达时间之间执行脉冲星旋转的整数数量来限制脉冲星的旋转,天体和可能的二进制参数。相连接是在确定脉冲星时解决方案时明确确定到达时间(TOA)之间的旋转数的过程。 PULSAR时机当前需要一个人进行的手动过程,该过程由个人执行。为了量化和简化此过程,我们创建了算法脉冲星计时器,APT,可以准确相位连接和时间隔离的脉冲星的算法。使用统计f检验以及参数不确定性和协方差的知识,该算法决定了在拟合中包含哪些新数据,何时添加其他时序参数以及在后续迭代中尝试尝试的模型。使用这些工具,该算法可以相结合的时序数据,该数据以前需要大量的手动努力。我们在100个模拟系统上测试了算法,成功率为99%。 APT将统计测试和技术与逻辑决策过程相结合,与数十年来的Pulsar天文学家使用的手册非常相似,以及一些计算蛮力,以使经常孤立的Pulsar相连接的棘手过程自动化,为二进制脉冲脉冲系统的自动化拟合的基础奠定了基础。

Pulsar timing is a process of iteratively fitting pulse arrival times to constrain the spindown, astrometric, and possibly binary parameters of a pulsar, by enforcing integer numbers of pulsar rotations between the arrival times. Phase connection is the process of unambiguously determining those rotation numbers between the times of arrival (TOAs) while determining a pulsar timing solution. Pulsar timing currently requires a manual process of step-by-step phase connection performed by individuals. In an effort to quantify and streamline this process, we created the Algorithmic Pulsar Timer, APT, an algorithm which can accurately phase connect and time isolated pulsars. Using the statistical F-test and knowledge of parameter uncertainties and covariances, the algorithm decides what new data to include in a fit, when to add additional timing parameters, and which model to attempt in subsequent iterations. Using these tools, the algorithm can phase-connect timing data that previously required substantial manual effort. We tested the algorithm on 100 simulated systems, with a 99% success rate. APT combines statistical tests and techniques with a logical decision-making process, very similar to the manual one used by pulsar astronomers for decades, and some computational brute-force, to automate the often tricky process of isolated pulsar phase connection, setting the foundation for automated fitting of binary pulsar systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源