论文标题

到“衡量俱乐部序列与连续体大的衡量”折面

Corrigendum to "Measuring club-sequences together with the continuum large"

论文作者

Aspero, David, Mota, Miguel Angel

论文摘要

测量表明,对于e \ - 全序$(c_Δ)_ {Δ<ω​​_1} $,每个$c_Δ$都是$δ$的封闭子集,有一个$ c \subseteqΩ_1$,以至于c $ in C $ c $ cy c \capΔ$ cap farcy的每一个$δf in c $ cy the y cap the oc cy in oc cy y code cod $ c_uint $c_Δ$c_Δ$c_Δ$c_Δ$c_Δ$ c_uint。在我们的JSL论文“测量俱乐部序列以及连续元素的测量”中,我们声称证明了用$ 2^{\ aleph_0} $任意大的量子的一致性,从而回答了贾斯汀·摩尔的问题。该论文中的证明是有缺陷的。在提出的折叠术中,我们提供了正确的结果证明。该构建在任何ZFC+CH的模型上都可以使用,并且可以描述为进行有限支撑强迫构造的结果,该构造具有由带有标记的合适的对称模型组成的侧条件。

Measuring says that for e\-very sequence $(C_δ)_{δ<ω_1}$ with each $C_δ$ being a closed subset of $δ$ there is a club $C\subseteqω_1$ such that for every $δ\in C$, a tail of $C\capδ$ is either contained in or disjoint from $C_δ$. In our JSL paper "Measuring club-sequences together with the continuum large" we claimed to prove the consistency of Measuring with $2^{\aleph_0}$ being arbitrarily large, thereby answering a question of Justin Moore. The proof in that paper was flawed. In the presented corrigendum we provide a correct proof of that result. The construction works over any model of ZFC+CH and can be described as the result of performing a finite-support forcing construction with side conditions consisting of suitable symmetric systems of models with markers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源