论文标题
BMS代数作为轻度重力中庞加莱对称的扩展
BMS algebra as an extension of the Poincaré symmetry in light-cone gravity
论文作者
论文摘要
我们分析了在四个维度的轻型重力中庞加莱对称的局部扩展。我们使用一种形式主义,在两个物理自由度上代表代数,一个具有螺旋$ 2 $,另一个带有螺旋性$ -2 $。该表示是非线性的,而轻曲动量之一是哈密顿量,因此是代数的非线性发电机。我们发现,这可以在局部实现,庞加莱代数扩展到BMS对称性,而无需提及渐近限制。
We analyze possible local extensions of the Poincaré symmetry in light-cone gravity in four dimensions. We use a formalism where we represent the algebra on the two physical degrees of freedom, one with helicity $2$ and the other with helicity $-2$. The representation is non-linearly realized and one of the light-cone momenta is the Hamiltonian, which is hence a non-linear generator of the algebra. We find that this can be locally realized and the Poincaré algebra extended to the BMS symmetry without any reference to asymptotic limits.