论文标题

点击高音:最大化预期订单统计的子集选择

Hitting the High Notes: Subset Selection for Maximizing Expected Order Statistics

论文作者

Mehta, Aranyak, Nadav, Uri, Psomas, Alexandros, Rubinstein, Aviad

论文摘要

我们认为以$ n $随机变量选择$ k $的基本问题是,预期的最高或第二高值最大化。这个问题捕获了几个应用程序,我们对候选人的质量(例如拍卖竞标,搜索结果)有不确定性,并且由于外源性约束而具有仅探索小子集的能力。例如,考虑第二个价格拍卖,其中系统约束(例如,昂贵的检索或模型计算)允许仅参与$ n $ bidders中的$ k $,其目标是优化预期效率(最高竞标)或预期收入(第二高价)。 我们研究了每个随机变量的明确描述的情况。我们为最大化预期最高值的问题提供了PTA。对于第二高的值,我们证明了一个硬度结果:假设种植的集团假设,在多项式时间内没有恒定的因子近似算法。令人惊讶的是,在假设每个随机变量都具有单调危险率(MHR)的假设,即一种简单的基于得分的算法,即选择$ k $随机变量,其最大$ 1/\ sqrt {k} $最高位数的最高近似值是预期的最高值和第二高价值,\ emph {semultane}。

We consider the fundamental problem of selecting $k$ out of $n$ random variables in a way that the expected highest or second-highest value is maximized. This question captures several applications where we have uncertainty about the quality of candidates (e.g. auction bids, search results) and have the capacity to explore only a small subset due to an exogenous constraint. For example, consider a second price auction where system constraints (e.g., costly retrieval or model computation) allow the participation of only $k$ out of $n$ bidders, and the goal is to optimize the expected efficiency (highest bid) or expected revenue (second highest bid). We study the case where we are given an explicit description of each random variable. We give a PTAS for the problem of maximizing the expected highest value. For the second-highest value, we prove a hardness result: assuming the Planted Clique Hypothesis, there is no constant factor approximation algorithm that runs in polynomial time. Surprisingly, under the assumption that each random variable has monotone hazard rate (MHR), a simple score-based algorithm, namely picking the $k$ random variables with the largest $1/\sqrt{k}$ top quantile value, is a constant approximation to the expected highest and second highest value, \emph{simultaneously}.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源