论文标题

Deeplesionbrain:迈向更广泛的深度学习概括,以进行多发性硬化病变分段

DeepLesionBrain: Towards a broader deep-learning generalization for multiple sclerosis lesion segmentation

论文作者

Kamraoui, Reda Abdellah, Ta, Vinh-Thong, Tourdias, Thomas, Mansencal, Boris, Manjon, José V, Coupé, Pierrick

论文摘要

最近,基于卷积神经网络(CNN)的分割方法在自动多发性硬化症(MS)病变分段中表现出令人鼓舞的性能。这些技术甚至在受控评估条件(例如MS MS病变分割挑战(ISBI挑战))方面超过了人类专家。但是,经过培训的最先进的方法在高度控制的数据集上表现良好,无法从看不见的数据集中概括临床数据。我们没有提出分割精度的另一种改进,而是提出了一种新颖的方法,以鲁棒性来域移动,并在看不见的数据集上表现良好,称为DeepLesionbrain(DLB)。该概括属性由三个主要贡献产生。首先,DLB基于大量紧凑的3D CNN。尽管某些单个网络概括了失败的风险,但这种空间分布的策略仍确保了强大的预测。其次,DLB包括一个新的图像质量数据增强,以减少对培训数据特异性的依赖性(例如,获取协议)。最后,为了学习对MS病变的更概括的表示,我们提出了一个分层专业化学习(HSL)。 HSL是通过在整个大脑上预先培训通用网络的预训练,然后将其权重作为本地专业网络的初始化。为此,DLB学习了在全球图像级别提取的两个通用功能,又是在本地图像级别提取的特定功能。 DLB的概括在MSSEG'16,ISBI挑战和内部数据集的跨数据库实验中得到了验证。在实验中,与最新方法相比,DLB显示出更高的分割精度,更好的分割一致性和更高的概括性能。因此,DLB提供了一个非常适合临床实践的强大框架。

Recently, segmentation methods based on Convolutional Neural Networks (CNNs) showed promising performance in automatic Multiple Sclerosis (MS) lesions segmentation. These techniques have even outperformed human experts in controlled evaluation conditions such as Longitudinal MS Lesion Segmentation Challenge (ISBI Challenge). However state-of-the-art approaches trained to perform well on highly-controlled datasets fail to generalize on clinical data from unseen datasets. Instead of proposing another improvement of the segmentation accuracy, we propose a novel method robust to domain shift and performing well on unseen datasets, called DeepLesionBrain (DLB). This generalization property results from three main contributions. First, DLB is based on a large group of compact 3D CNNs. This spatially distributed strategy ensures a robust prediction despite the risk of generalization failure of some individual networks. Second, DLB includes a new image quality data augmentation to reduce dependency to training data specificity (e.g., acquisition protocol). Finally, to learn a more generalizable representation of MS lesions, we propose a hierarchical specialization learning (HSL). HSL is performed by pre-training a generic network over the whole brain, before using its weights as initialization to locally specialized networks. By this end, DLB learns both generic features extracted at global image level and specific features extracted at local image level. DLB generalization was validated in cross-dataset experiments on MSSEG'16, ISBI challenge, and in-house datasets. During experiments, DLB showed higher segmentation accuracy, better segmentation consistency and greater generalization performance compared to state-of-the-art methods. Therefore, DLB offers a robust framework well-suited for clinical practice.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源