论文标题
域自适应语义分割的跨域分组和对齐
Cross-Domain Grouping and Alignment for Domain Adaptive Semantic Segmentation
论文作者
论文摘要
深度卷积神经网络(CNN)中跨源和目标域的语义分割网络的现有技术与全球或类别感知方式的所有样本涉及来自两个域的所有样本。他们不考虑目标域本身或估计类别内的类间变化,而提供了编码具有多模式数据分布的域的限制。为了克服这一局限性,我们引入了一个可学习的聚类模块,以及一个称为跨域组和对齐的新型域适应框架。为了将样品聚集在跨域中,目的是在不忘记源域上精确的分割能力的情况下最大化域对齐,我们特别提出了两个损失函数,特别是为了鼓励群集之间的语义一致性和正交性。我们还提出了损失,以解决类别不平衡问题,这是先前方法的另一个局限性。我们的实验表明,我们的方法始终提高语义分割中的适应性性能,超过各种域适应设置上的最新作品。
Existing techniques to adapt semantic segmentation networks across the source and target domains within deep convolutional neural networks (CNNs) deal with all the samples from the two domains in a global or category-aware manner. They do not consider an inter-class variation within the target domain itself or estimated category, providing the limitation to encode the domains having a multi-modal data distribution. To overcome this limitation, we introduce a learnable clustering module, and a novel domain adaptation framework called cross-domain grouping and alignment. To cluster the samples across domains with an aim to maximize the domain alignment without forgetting precise segmentation ability on the source domain, we present two loss functions, in particular, for encouraging semantic consistency and orthogonality among the clusters. We also present a loss so as to solve a class imbalance problem, which is the other limitation of the previous methods. Our experiments show that our method consistently boosts the adaptation performance in semantic segmentation, outperforming the state-of-the-arts on various domain adaptation settings.