论文标题

典型稀疏快速傅立叶变换算法的经验评估

Empirical Evaluation of Typical Sparse Fast Fourier Transform Algorithms

论文作者

Li, Bin, Jiang, Zhikang, Chen, Jie

论文摘要

很长一段时间以来,计算大小n的k-sparse信号的稀疏快速傅立叶变换(SFFT)已成为关键主题。 SFFT算法通过利用信号固有的特征来降低运行时和采样复杂性,即频域中大量信号稀疏。已经提出了十多种SFFT算法,可以根据过滤器,框架,位置方法,估计方法将其分类为多种类型。在本文中,这些算法的技术在理论上得到了完全分析。在实践中,对THEM的性能进行了彻底的测试和验证。理论分析包括标题内容:五个信号操作,三种频率桶化方法,五种位置方法,四种估计方法,两个由铲斗引起的问题,三种解决这两个问题的方法,四个算法框架。详细介绍了上述所有技术和方法,并提供了示例以说明上述研究。经过理论研究后,我们通过标准测试平台进行计算不同SNR,N,K的信号的实验,并记录运行时间,信号采样的百分比以及L0,L1,L2误差,以及八种不同的SFFT算法。实验的结果满足了理论上获得的推论。

Computing the Sparse Fast Fourier Transform(sFFT) of a K-sparse signal of size N has emerged as a critical topic for a long time. The sFFT algorithms decrease the runtime and sampling complexity by taking advantage of the signal inherent characteristics that a large number of signals are sparse in the frequency domain. More than ten sFFT algorithms have been proposed, which can be classified into many types according to filter, framework, method of location, method of estimation. In this paper, the technology of these algorithms is completely analyzed in theory. The performance ofthem is thoroughly tested and verified in practice. The theoretical analysis includes thefollowing contents: five operations of signal, three methods of frequency bucketization, five methods of location, four methods of estimation, two problems caused by bucketization, three methods to solve these two problems, four algorithmic frameworks. All the above technologies and methods are introduced in detail and examples are given to illustrate the above research. After theoretical research, we make experiments for computing the signals of different SNR, N , K by a standard testing platform and record the run time, percentage of the signal sampled and L0 , L1 , L2 error with eight different sFFT algorithms. The result of experiments satisfies the inferences obtained in theory.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源