论文标题
tsallis不确定性
Tsallis uncertainty
论文作者
论文摘要
最近已经显示,贝肯斯坦熵结合并不受到满足的修改形式的海森堡不确定性原理(HUP)的系统尊重,包括广义和扩展的不确定性原理,甚至其组合。另一方面,与Bekenstein熵不同的广义熵的使用在描述重力和相关主题时,与通常的主题相比,我们与不同的均衡表达式相比。以这种方式,均衡定理的数学形式可能与特定熵的代数表达有关,该代数表达与标准的Bekenstein熵不同,该熵最初被选为描述黑洞事件地平线,请参见E. M. C. Abreu等人,MMPLA 32,2050266(2020)。在这些作品的激励下,我们解决了三个新的不确定性原则,导致最近引入了广义熵。另外,还计算了相应的能源不确定性关系和未温度。结果,看来由Tsallis等广义熵描述的系统不一定符合HUP,并且可能满足修改后的HUP形式。
It has been recently shown that the Bekenstein entropy bound is not respected by the systems satisfying modified forms of Heisenberg uncertainty principle (HUP) including the generalized and extended uncertainty principles, or even their combinations. On the other, the use of generalized entropies, which differ from Bekenstein entropy, in describing gravity and related topics signals us to different equipartition expressions compared to the usual one. In that way, The mathematical form of an equipartition theorem can be related to the algebraic expression of a particular entropy, different from the standard Bekenstein entropy, initially chosen to describe the black hole event horizon, see E. M. C. Abreu et al., MPLA 32, 2050266 (2020). Motivated by these works, we address three new uncertainty principles leading to recently introduced generalized entropies. In addition, the corresponding energy-time uncertainty relations and Unruh temperatures are also calculated. As a result, it seems that systems described by generalized entropies, such as those of Tsallis, do not necessarily meet HUP and may satisfy modified forms of HUP.