论文标题

分解身份和代数Bethe ansatz $ d^{(2)} _ {2} $模型

Factorization identities and algebraic Bethe ansatz for $D^{(2)}_{2}$ models

论文作者

Nepomechie, Rafael I., Retore, Ana L.

论文摘要

我们表达$ d^{(2)} _ {2} $传输矩阵作为$ a^{(1)} _ {1} $转移矩阵的产品,用于封闭和开放的旋转链。我们使用这些关系(我们称为分解身份)来解决代数Bethe Ansatz的模型。我们还制定并解决了一个新的可集成xxz的开放式自旋链,其均匀数量取决于连续参数,我们将其解释为边界的快速性。

We express $D^{(2)}_{2}$ transfer matrices as products of $A^{(1)}_{1}$ transfer matrices, for both closed and open spin chains. We use these relations, which we call factorization identities, to solve the models by algebraic Bethe ansatz. We also formulate and solve a new integrable XXZ-like open spin chain with an even number of sites that depends on a continuous parameter, which we interpret as the rapidity of the boundary.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源