论文标题

基于模型的深度学习

Model-Based Deep Learning

论文作者

Shlezinger, Nir, Whang, Jay, Eldar, Yonina C., Dimakis, Alexandros G.

论文摘要

传统上,信号处理,通信和控制依赖经典的统计建模技术。这种基于模型的方法利用代表基础物理学,先验信息和其他领域知识的数学公式。简单的经典模型对不准确性有用,但对不准确性敏感,当实际系统显示复杂或动态的行为时,可能会导致性能差。另一方面,随着数据集变得丰富,现代深度学习管道的力量增加,纯粹的模型不合命斯液的方法越来越流行。深度神经网络(DNNS)使用通用体系结构,这些架构学会从数据中运行,并表现出出色的性能,尤其是在监督问题上。但是,DNN通常需要大量的数据和巨大的计算资源,从而限制了它们在某些信号处理方案中的适用性。我们对将原则数学模型与数据驱动系统结合在一起的混合技术感兴趣,以从两种方法的优势中受益。这种基于模型的深度学习方法通​​过为特定问题设计的数学结构以及从有限的数据中学习来利用这两个部分领域知识。在本文中,我们调查了研究和设计基于模型的深度学习系统的领先方法。我们根据其推理机制将基于混合模型/数据驱动的系统分为类别。我们对以系统的方式将基于模型的算法与深度学习以及具体指南和详细的信号处理导向的详细指南相结合的领先方法进行了全面综述。我们的目的是促进对未来系统的设计和研究信号处理和机器学习的交集,这些系统结合了两个领域的优势。

Signal processing, communications, and control have traditionally relied on classical statistical modeling techniques. Such model-based methods utilize mathematical formulations that represent the underlying physics, prior information and additional domain knowledge. Simple classical models are useful but sensitive to inaccuracies and may lead to poor performance when real systems display complex or dynamic behavior. On the other hand, purely data-driven approaches that are model-agnostic are becoming increasingly popular as datasets become abundant and the power of modern deep learning pipelines increases. Deep neural networks (DNNs) use generic architectures which learn to operate from data, and demonstrate excellent performance, especially for supervised problems. However, DNNs typically require massive amounts of data and immense computational resources, limiting their applicability for some signal processing scenarios. We are interested in hybrid techniques that combine principled mathematical models with data-driven systems to benefit from the advantages of both approaches. Such model-based deep learning methods exploit both partial domain knowledge, via mathematical structures designed for specific problems, as well as learning from limited data. In this article we survey the leading approaches for studying and designing model-based deep learning systems. We divide hybrid model-based/data-driven systems into categories based on their inference mechanism. We provide a comprehensive review of the leading approaches for combining model-based algorithms with deep learning in a systematic manner, along with concrete guidelines and detailed signal processing oriented examples from recent literature. Our aim is to facilitate the design and study of future systems on the intersection of signal processing and machine learning that incorporate the advantages of both domains.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源