论文标题
Sondheimer振荡作为II类型WEYL半含量WP $ _2 $中非欧马流量的探针
Sondheimer oscillations as a probe of non-ohmic flow in type-II Weyl semimetal WP$_2$
论文作者
论文摘要
随着电子应用中的导体收缩,微观传导过程导致与欧姆定律的偏差。取决于保存动量的长度尺度($ L_ {MC} $)和放松($ L_ {MR} $)电子散射以及设备尺寸($ D $),当前流量可能会从欧姆转向弹道到弹道,转向流体动力学制度,及其更多的外来混合物。到目前为止,在微/纳米电视中以自愿获得这些参数,从而确定其传导状态,这是一种原位的,operando的方法论。在这种情况下,我们利用了Sondheimer振荡,由于螺旋电子运动而引起的半古典磁磁振荡,即使在$ L_ {MR} \ GG D $中,即使在微型驱动器中获得$ L_ {Mr} $。这给出了有关量子振荡的大量$ l_ {Mr} $互补的信息,量子振荡对所有散射过程敏感。我们从拓扑半金属WP $ _2 $中从Sondheimer振幅中提取$ l_ {Mr} $,在高达$ t \ sim 50 $ 〜k的高度时,与流体动力传输现象最相关的范围。我们在微米大小的设备上的数据与大量$ L_ {MR} $的实验报告非常吻合,因此确认WP $ _2 $可以在没有降解的情况下微观生成。实际上,测得的散射速率与理论上预测的电子散射的散射速率非常匹配,从而支持在这些温度下WP $ _2 $中电子和声子之间强动量交换的概念。这些结果最终建立了sondheimer振荡,作为在研究非荷兰电子流中的微设备中的$ L_ {MR} $的定量探针。
As conductors in electronic applications shrink, microscopic conduction processes lead to strong deviations from Ohm's law. Depending on the length scales of momentum conserving ($l_{MC}$) and relaxing ($l_{MR}$) electron scattering, and the device size ($d$), current flows may shift from ohmic to ballistic to hydrodynamic regimes and more exotic mixtures thereof. So far, an in situ, in-operando methodology to obtain these parameters self-consistently within a micro/nanodevice, and thereby identify its conduction regime, is critically lacking. In this context, we exploit Sondheimer oscillations, semi-classical magnetoresistance oscillations due to helical electronic motion, as a method to obtain $l_{MR}$ in micro-devices even when $l_{MR}\gg d$. This gives information on the bulk $l_{MR}$ complementary to quantum oscillations, which are sensitive to all scattering processes. We extract $l_{MR}$ from the Sondheimer amplitude in the topological semi-metal WP$_2$, at elevated temperatures up to $T\sim 50$~K, in a range most relevant for hydrodynamic transport phenomena. Our data on micrometer-sized devices are in excellent agreement with experimental reports of the large bulk $l_{MR}$ and thus confirm that WP$_2$ can be microfabricated without degradation. Indeed, the measured scattering rates match well with those of theoretically predicted electron-phonon scattering, thus supporting the notion of strong momentum exchange between electrons and phonons in WP$_2$ at these temperatures. These results conclusively establish Sondheimer oscillations as a quantitative probe of $l_{MR}$ in micro-devices in studying non-ohmic electron flow.