论文标题
二维$ \ mathbb {z} _2 $量规理论的量子阶段耦合到单组分费用物质
Quantum phases of two-dimensional $\mathbb{Z}_2$ gauge theory coupled to single-component fermion matter
论文作者
论文摘要
我们研究了韦格纳(Wegner)的离散量表字段的丰富量子相图与$ u(1)$对称的单分量成分物质相互作用,在二维方形晶格上跳跃。 In particular limits the model reduces to (i) pure $\mathbb{Z}_2$ even and odd gauge theories, (ii) free fermions in a static background of deconfined $\mathbb{Z}_2$ gauge fields, (iii) the kinetic Rokhsar-Kivelson quantum dimer model at a generic dimer filling.我们开发了一个局部转换,将晶格量规理论映射到$ \ mathbb {z} _2 $ gauge-coguge-Invariant spin $ 1/2 $自由度的模型。使用映射,我们执行数值密度矩阵重新归一化组计算,以证实我们对上述限制的理解。此外,在没有磁性斑块项的情况下,我们揭示了半填充时拓扑排序的狄拉克半学和交错的莫特绝缘子阶段的签名。在强耦合时,晶格仪理论显示出分散的现象学,孤立的费米子完全冷冻,并且表现出受限制的迁移率。在这个极限中,我们预测在基态二聚体中形成紧凑型簇,其跳跃的大小被指数抑制。我们使用精确的对角线化在数值上确定最小簇的带结构。本文讨论的丰富现象学可以在离散仪理论的类似物和数字量子模拟器以及基塔夫旋转轨道液体中进行探测。
We investigate the rich quantum phase diagram of Wegner's theory of discrete Ising gauge fields interacting with $U(1)$ symmetric single-component fermion matter hopping on a two-dimensional square lattice. In particular limits the model reduces to (i) pure $\mathbb{Z}_2$ even and odd gauge theories, (ii) free fermions in a static background of deconfined $\mathbb{Z}_2$ gauge fields, (iii) the kinetic Rokhsar-Kivelson quantum dimer model at a generic dimer filling. We develop a local transformation that maps the lattice gauge theory onto a model of $\mathbb{Z}_2$ gauge-invariant spin $1/2$ degrees of freedom. Using the mapping, we perform numerical density matrix renormalization group calculations that corroborate our understanding of the limits identified above. Moreover, in the absence of the magnetic plaquette term, we reveal signatures of topologically ordered Dirac semimetal and staggered Mott insulator phases at half-filling. At strong coupling, the lattice gauge theory displays fracton phenomenology with isolated fermions being completely frozen and dimers exhibiting restricted mobility. In that limit, we predict that in the ground state dimers form compact clusters, whose hopping is suppressed exponentially in their size. We determine the band structure of the smallest clusters numerically using exact diagonalization. The rich phenomenology discussed in this paper can be probed in analog and digital quantum simulators of discrete gauge theories and in Kitaev spin-orbital liquids.