论文标题
氧化过程使Ecceladus上的代谢菜单多样化
Oxidation Processes Diversify the Metabolic Menu on Enceladus
论文作者
论文摘要
卡西尼(Cassini)向土星系统的任务发现了一堆冰颗粒和水蒸气,从卫星冰层面的冰裂面上爆发。这个月亮在其冰冷的外观下与一个岩石核心接触,使其成为寻找太阳系中外星生命的证据的有前途的地方。羽流中H $ _2 $的先前检测表明,有可用于甲烷发生的自由能,H $ _2 $与Co $ _2 $的代谢反应形成甲烷和水。其他代谢途径可以在Ecceladus的海洋中提供能源,但需要使用羽流中未检测到的其他氧化剂。在这里,我们执行化学建模,以确定放射性物质O $ _2 $和H $ _2 $ o $ $ _2 $以及在海洋和岩石核心中的非生物氧化还原化学的产生如何促进可以支持Ecceladus海洋代谢过程的化学不平衡。我们考虑了三种可能的海洋氧化还原化学病例:病例I,其中还没有可观的量和氧化剂随着时间的推移而积累,而案例II和III中分别是水性还原剂或海底矿物质,将O $ $ _2 $和H $ _2 $和H $ _2 $ _2 $ o $ _2 $转换为$ _4^$ _4^$ _4^{2-oxy和ferric oxysy和ferric y。我们计算出在所有三种情况下可用于代谢反应的氧化剂和化学能的浓度上的上限,从而忽略了其他非生物反应。在所有三种情况下,我们发现,微生物在地球上使用的许多有氧和厌氧代谢反应可以达到将ADP转换为ATP所需的最低自由能阈值,并且可以维持Ecceladus Seeeladus SeapeL层中的正阳性细胞密度值。这些发现表明,氧化剂的产生和氧化化学可能有助于维持可能的生命和代谢多样的微生物社区。
The Cassini mission to the Saturn system discovered a plume of ice grains and water vapor erupting from cracks on the icy surface of the satellite Enceladus. This moon has a global ocean in contact with a rocky core beneath its icy exterior, making it a promising location to search for evidence of extraterrestrial life in the solar system. The previous detection of H$_2$ in the plume indicates that there is free energy available for methanogenesis, the metabolic reaction of H$_2$ with CO$_2$ to form methane and water. Additional metabolic pathways could provide sources of energy in Enceladus' ocean, but require the use of other oxidants that have not been detected in the plume. Here, we perform chemical modeling to determine how the production of radiolytic O$_2$ and H$_2$O$_2$, and abiotic redox chemistry in the ocean and rocky core, contribute to chemical disequilibria that could support metabolic processes in Enceladus' ocean. We consider three possible cases for ocean redox chemistry: Case I in which reductants are not present in appreciable amounts and oxidants accumulate over time, and Cases II and III in which aqueous reductants or seafloor minerals, respectively, convert O$_2$ and H$_2$O$_2$ to SO$_4^{2-}$ and ferric oxyhydroxides. We calculate the upper limits on the concentrations of oxidants and chemical energy available for metabolic reactions in all three cases, neglecting additional abiotic reactions. For all three cases, we find that many aerobic and anaerobic metabolic reactions used by microbes on Earth could meet the minimum free energy threshold required for terrestrial life to convert ADP to ATP, as well as sustain positive cell density values within the Enceladus seafloor and/or ocean. These findings indicate that oxidant production and oxidation chemistry could contribute to supporting possible life and a metabolically diverse microbial community on Enceladus.