论文标题
被困的玻色子,热力学极限和凝结:在分解代数的框架中的研究
Trapped bosons, thermodynamic limit and condensation: a study in the framework of resolvent algebras
论文作者
论文摘要
与其他非相关玻色子的无限系统相比,与其他用于治疗规范量子系统的方法相比,分解代数的优点是例证。在此框架内,在固定的C*-Algebra上定义了陷阱和未捕获的玻色子的平衡状态,以针对温度和化学电位的所有物理有意义的值。此外,代数为其分析提供了工具,而不必依靠“临时”处方来测试相关特征,例如Bose-Einstein冷凝物的出现。如果在任何数量的空间维度上进行非相互作用系统,则说明了该方法,并为冷凝物的出现提供了新的启示。然而,该框架还涵盖了相互作用,因此为骨系统分析提供了普遍的基础。
The virtues of resolvent algebras, compared to other approaches for the treatment of canonical quantum systems, are exemplified by infinite systems of non-relativistic bosons. Within this framework, equilibrium states of trapped and untrapped bosons are defined on a fixed C*-algebra for all physically meaningful values of the temperature and chemical potential. Moreover, the algebra provides the tools for their analysis without having to rely on 'ad hoc' prescriptions for the test of pertinent features, such as the appearance of Bose-Einstein condensates. The method is illustrated in case of non-interacting systems in any number of spatial dimensions and sheds new light on the appearance of condensates. Yet the framework also covers interactions and thus provides a universal basis for the analysis of bosonic systems.