论文标题
适用于加拿大选民的本地和全球空间自相关的无计算非参数测试
Computation-free Nonparametric testing for Local and Global Spatial Autocorrelation with application to the Canadian Electorate
论文作者
论文摘要
地方和全球空间关联的度量是探索性空间数据分析的关键工具。存在许多此类措施,包括Moran的$ i $,Geary的$ C $和Getis-ord $ g $和$ g^*$统计。测试意义的参数方法取决于强有的假设,而现实世界数据通常无法满足这些假设。另外,最受欢迎的非参数方法是置换测试,尤其是对于大量的图形网络,造成了巨大的计算负担。因此,我们提出了一种无计算方法,用于对局部和全球空间自相关测量的非参数置换测试,这是由于功能分析和$ l^p $空间理论的Khintchine不平等的概括所引起的。我们的方法可以证明2019年加拿大联邦加拿大大选在艾伯塔省的结果。我们记录了保守派候选人在每个骑行中获得的投票百分比。该数据不正常,样本量固定为$ n = 34 $乘车,使参数方法无效。相比之下,对于每个骑行,多个测试统计数据,具有各种邻域结构以及多个测试校正的经典置换测试将需要模拟数百万排列。我们能够在此数据集上与排列测试获得类似的统计能力,而无需进行乏味的模拟。我们还考虑了整个加拿大选举地图上模拟的数据。
Measures of local and global spatial association are key tools for exploratory spatial data analysis. Many such measures exist including Moran's $I$, Geary's $C$, and the Getis-Ord $G$ and $G^*$ statistics. A parametric approach to testing for significance relies on strong assumptions, which are often not met by real world data. Alternatively, the most popular nonparametric approach, the permutation test, imposes a large computational burden especially for massive graphical networks. Hence, we propose a computation-free approach to nonparametric permutation testing for local and global measures of spatial autocorrelation stemming from generalizations of the Khintchine inequality from functional analysis and the theory of $L^p$ spaces. Our methodology is demonstrated on the results of the 2019 federal Canadian election in the province of Alberta. We recorded the percentage of the vote gained by the conservative candidate in each riding. This data is not normal, and the sample size is fixed at $n=34$ ridings making the parametric approach invalid. In contrast, running a classic permutation test for every riding, for multiple test statistics, with various neighbourhood structures, and multiple testing correction would require the simulation of millions of permutations. We are able to achieve similar statistical power on this dataset to the permutation test without the need for tedious simulation. We also consider data simulated across the entire electoral map of Canada.