论文标题

两阶段复制移动伪造的检测,以自我深度匹配和提案超粘合

Two-Stage Copy-Move Forgery Detection with Self Deep Matching and Proposal SuperGlue

论文作者

Liu, Yaqi, Xia, Chao, Zhu, Xiaobin, Xu, Shengwei

论文摘要

复制伪造检测通过检测同一图像中的粘贴和源区域来识别篡改图像。在本文中,我们提出了一个新颖的两阶段框架,专门用于复制伪造检测。第一阶段是骨干自我深度匹配的网络,第二阶段被称为“提案超级”。在第一阶段,融合了Artous卷积和跳过匹配,以丰富空间信息并利用层次结构特征。空间关注是建立在自我相关的基础上,以增强寻找外观相似区域的能力。在第二阶段,提议提议超级措施去除虚假警报区域和补救区域不完整的区域。具体而言,建议选择策略旨在根据提案产生和骨干分数地图封闭高度可疑的区域。然后,通过基于深度学习的键盘提取和匹配,即SuperPoint和Superglue,在候选提案中进行了成对匹配。集成分数图的生成和改进方法旨在整合两个阶段的结果并获得优化的结果。我们的两个阶段框架通过获得高度怀疑的建议来统一端到端的深度匹配和关键点匹配,并为在复制移动伪造检测中开辟了一门新的大门,以进行深度学习研究。公开可用数据集的实验证明了我们两阶段框架的有效性。

Copy-move forgery detection identifies a tampered image by detecting pasted and source regions in the same image. In this paper, we propose a novel two-stage framework specially for copy-move forgery detection. The first stage is a backbone self deep matching network, and the second stage is named as Proposal SuperGlue. In the first stage, atrous convolution and skip matching are incorporated to enrich spatial information and leverage hierarchical features. Spatial attention is built on self-correlation to reinforce the ability to find appearance similar regions. In the second stage, Proposal SuperGlue is proposed to remove false-alarmed regions and remedy incomplete regions. Specifically, a proposal selection strategy is designed to enclose highly suspected regions based on proposal generation and backbone score maps. Then, pairwise matching is conducted among candidate proposals by deep learning based keypoint extraction and matching, i.e., SuperPoint and SuperGlue. Integrated score map generation and refinement methods are designed to integrate results of both stages and obtain optimized results. Our two-stage framework unifies end-to-end deep matching and keypoint matching by obtaining highly suspected proposals, and opens a new gate for deep learning research in copy-move forgery detection. Experiments on publicly available datasets demonstrate the effectiveness of our two-stage framework.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源