论文标题

关于班级关系,交叉点和函数字段侧面的gl(2) -

On class number relations, intersections, and GL(2)-tale over the function field side

论文作者

Guo, Jia-Wei, Wei, Fu-Tsun

论文摘要

本文的目的是在功能领域研究类数关系和在Drinfeld-Stuhler模块化表面上的Hirzebruch-Zagier型除数的相交。主桥是带有Nebentypus的特定“谐波” theta系列。使用强近似定理,该系列的傅立叶系数以两种方式表示。一个来自经过修改的Hurwitz班级,另一个赋予了相交数字。对这种方法的详细说明,我们可以将这些类数字解释为Drinfeld-Stuhler模块化曲线上CM点上的“质量总和”,甚至将生成函数视为跨度的自动形式形式。

The aim of this paper is to study class number relations over function fields and the intersections of Hirzebruch-Zagier type divisors on the Drinfeld-Stuhler modular surfaces. The main bridge is a particular "harmonic" theta series with nebentypus. Using the strong approximation theorem, the Fourier coefficients of this series are expressed in two ways; one comes from modified Hurwitz class numbers and another gives the intersection numbers in question. An elaboration of this approach enables us to interpret these class numbers as a "mass sum" over the CM points on the Drinfeld-Stuhler modular curves, and even realize the generating function as a metaplectic automorphic form.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源