论文标题

E $ \ MATHBF {^3} $ mop:基于启发式运动原语的有效运动计划,以稀疏带结构修剪和路径优化

E$ \mathbf{^3} $MoP: Efficient Motion Planning Based on Heuristic-Guided Motion Primitives Pruning and Path Optimization With Sparse-Banded Structure

论文作者

Wen, Jian, Zhang, Xuebo, Gao, Haiming, Yuan, Jing, Fang, Yongchun

论文摘要

为了解决复杂环境中的自主导航问题,本文新提出了一种有效的运动计划方法。考虑到大规模,部分未知的复杂环境所面临的挑战,三层运动计划框架的设计经过精心设计,包括全球路径计划,本地路径优化和时间优化的速度计划。与现有方法相比,这项工作的新颖性是双重的:1)提出了一种新型的启发式指导的修剪策略,并完全集成到基于状态的基于状态的基于状态的全球路径规划师中,以进一步提高图形搜索的计算效率,2)一种新的软性局部路径优化方法,提出了稀疏范围的范围,该方法是在稀疏的系统结构中完全剥化了问题,该结构是完全范围的问题,这些问题是完全范围的。我们在各种复杂的模拟方案和具有挑战性的现实世界任务中验证方法的安全性,平稳性,灵活性和效率。结果表明,与最近的基于QuinticBézier曲线的状态空间采样方法相比,在全球计划阶段,计算效率提高了66.21%,机器人的运动效率提高了22.87%。我们将提出的运动计划框架E $ \ mathrm {^3} $ mop命名,其中数字3不仅意味着我们的方法是三层框架,而且还意味着所提出的方法在三个阶段中有效。

To solve the autonomous navigation problem in complex environments, an efficient motion planning approach is newly presented in this paper. Considering the challenges from large-scale, partially unknown complex environments, a three-layer motion planning framework is elaborately designed, including global path planning, local path optimization, and time-optimal velocity planning. Compared with existing approaches, the novelty of this work is twofold: 1) a novel heuristic-guided pruning strategy of motion primitives is proposed and fully integrated into the state lattice-based global path planner to further improve the computational efficiency of graph search, and 2) a new soft-constrained local path optimization approach is proposed, wherein the sparse-banded system structure of the underlying optimization problem is fully exploited to efficiently solve the problem. We validate the safety, smoothness, flexibility, and efficiency of our approach in various complex simulation scenarios and challenging real-world tasks. It is shown that the computational efficiency is improved by 66.21% in the global planning stage and the motion efficiency of the robot is improved by 22.87% compared with the recent quintic Bézier curve-based state space sampling approach. We name the proposed motion planning framework E$ \mathrm{^3} $MoP, where the number 3 not only means our approach is a three-layer framework but also means the proposed approach is efficient in three stages.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源