论文标题
从素数定理得出的Riemann Zeta功能的无零条
Zero-free strips for the Riemann zeta-function derived from the Prime Number Theorem
论文作者
论文摘要
我们使用质数定理来证明Riemann-Zeta函数的无零条。确切地说,我们证明存在$δ> 0 $,如果$ 0 \ leq r <δ$,则$ζ(s)\ neq 0 $对于re $ $ $(s)> 1-r $。
We use the Prime Number Theorem to prove the existence of zero-free strips for the Riemann-zeta function. Precisely, we prove that there exists $δ>0$ for which if $0\leq r<δ$ then $ζ(s)\neq 0$ for Re$(s)>1-r$.