论文标题

通过本地隐式图像函数学习连续的图像表示

Learning Continuous Image Representation with Local Implicit Image Function

论文作者

Chen, Yinbo, Liu, Sifei, Wang, Xiaolong

论文摘要

如何表示图像?当视觉世界以连续的方式呈现时,机器存储并以2D像素阵列以离散的方式查看图像。在本文中,我们试图学习图像的连续表示。受到隐式神经表示的最新进展的启发,我们提出了局部隐式图像函数(LIIF),该局部隐含图像函数(LIIF)采用图像坐标和坐标周围的2D深度特征作为输入,可以预测给定坐标为输出的RGB值。由于坐标是连续的,因此可以以任意分辨率表示LIIF。为了生成图像的连续表示形式,我们通过具有超分辨率的自我监督任务来训练用LIIF表示的编码器。可以通过任意分辨率提出学习的连续表示,甚至可以推断出未提供训练任务的X30更高分辨率。我们进一步表明,LIIF表示在2D中建立了离散和连续表示之间的桥梁,它自然地支持具有尺寸变化的图像基础真实性的学习任务,并通过调整基本真相的方法极大地超过了该方法。

How to represent an image? While the visual world is presented in a continuous manner, machines store and see the images in a discrete way with 2D arrays of pixels. In this paper, we seek to learn a continuous representation for images. Inspired by the recent progress in 3D reconstruction with implicit neural representation, we propose Local Implicit Image Function (LIIF), which takes an image coordinate and the 2D deep features around the coordinate as inputs, predicts the RGB value at a given coordinate as an output. Since the coordinates are continuous, LIIF can be presented in arbitrary resolution. To generate the continuous representation for images, we train an encoder with LIIF representation via a self-supervised task with super-resolution. The learned continuous representation can be presented in arbitrary resolution even extrapolate to x30 higher resolution, where the training tasks are not provided. We further show that LIIF representation builds a bridge between discrete and continuous representation in 2D, it naturally supports the learning tasks with size-varied image ground-truths and significantly outperforms the method with resizing the ground-truths.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源