论文标题

平衡产品量子代码

Balanced Product Quantum Codes

论文作者

Breuckmann, Nikolas P., Eberhardt, Jens N.

论文摘要

这项工作提供了$ [[n,k,d]]的第一个显式和非随机家族,$ ldpc量子代码编码$ k \inθ(n^\ frac {4} {5} {5})$逻辑Qubits,带有距离$ d \ inω(n^\ frac {3} {3} {5} {5} {5} {5})$。该家族是通过合并经典代码和Ramanujan通过称为“平衡产品”构建的。 最近,Hastings-Haah-O'Donnell和Panteleev-Kalachev是第一个表明存在的LDPC量子代码的家庭,它们破坏了$ \ peripatatorName {polylog}(polylog}(n)\ sqrt {n} $距离障碍。但是,它们的构造是基于概率参数,该参数仅保证具有很高概率的代码参数,而我们的界限无条件地保持。 此外,均衡产品允许对校准矩阵进行非 - 亚伯式扭曲,从而构建了LDPC量子代码,这些代码可以证明在θ(n)$中具有$ k \,并且我们认为我们具有θ(n)$的线性距离$ d \。

This work provides the first explicit and non-random family of $[[N,K,D]]$ LDPC quantum codes which encode $K \in Θ(N^\frac{4}{5})$ logical qubits with distance $D \in Ω(N^\frac{3}{5})$. The family is constructed by amalgamating classical codes and Ramanujan graphs via an operation called balanced product. Recently, Hastings-Haah-O'Donnell and Panteleev-Kalachev were the first to show that there exist families of LDPC quantum codes which break the $\operatorname{polylog}(N)\sqrt{N}$ distance barrier. However, their constructions are based on probabilistic arguments which only guarantee the code parameters with high probability whereas our bounds hold unconditionally. Further, balanced products allow for non-abelian twisting of the check matrices, leading to a construction of LDPC quantum codes that can be shown to have $K\in Θ(N)$ and that we conjecture to have linear distance $D\in Θ(N)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源